Abstract Optical absorption, emission and excitation spectra, lifetimes of 4S3/2 state and 4F9/2 state from 10K to 500K, and Raman spectra were measured for Er3+ ions in fluoride glass. The radiative transition probabilities were calculated on the basis of Judd-Ofelt theory. The nonradiative transition probabilities and the quantum efficiencies were determined by calculating the difference between the measured lifetimes and the calculated radiative transition probabilities. The temperature dependence of nonradiative transition provavility was investigated using the Huang-Rhys theory of multiphonon relaxation , in which two kinds of phonons as well as the parameter s were taken into consideration. A fairly good agreement of the theoretical calculation with the experimental results has been obtained. The value of s is estimated and the effect of s is discussed.
Study on stability of hydrogenated amorphous silicon films Zhu Xiu-Hong (朱秀红), Chen Guang-Hua (陈光华), Zhang Wen-Li (张文理), Ding Yi (丁毅), Ma Zhan-Jie (马占洁), Hu Yue-Hui (胡跃辉), He Bin (何斌), Rong Yan-Dong (荣延栋). Chin. Phys. B, 2005, 14(11): 2348-2351.
STUDY OF PHOTON-TRAPPING PHENOMENON IN POROUS SILICON LAYER CHEN LIANG-YAO (陈良尧), HOU XIAO-YUAN (侯晓远), HUANG DA-MING (黄大鸣), ZHANG FU-LONG (张甫龙), FENG XING-WEI (冯星伟), YANG MIN (杨敏), SU YI (苏毅), QIAN YOU-HUA (钱佑华), WANG XUN (王迅). Chin. Phys. B, 1994, 3(8): 595-607.
No Suggested Reading articles found!
Viewed
Full text
Abstract
Cited
Altmetric
blogs
tweeters
Facebook pages
Wikipedia page
Google+ users
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.