Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(3): 034206    DOI: 10.1088/1674-1056/ab6967
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Evaluation of polarization field in InGaN/GaN multiple quantum well structures by using electroluminescence spectra shift

Ping Chen(陈平)1,2, De-Gang Zhao(赵德刚)1,2, De-Sheng Jiang(江德生)1, Jing Yang(杨静)1, Jian-Jun Zhu(朱建军)1,2, Zong-Shun Liu(刘宗顺)1, Wei Liu(刘炜)1, Feng Liang(梁锋)1, Shuang-Tao Liu(刘双韬)1, Yao Xing(邢瑶)1, Li-Qun Zhang(张立群)3
1 State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences(CAS), Beijing 100083, China;
2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China;
3 Key Laboratory of Nano-devices and Applications of CAS, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, China
Abstract  In order to investigate the inherent polarization intensity in InGaN/GaN multiple quantum well (MQW) structures, the electroluminescence (EL) spectra of three samples with different GaN barrier thicknesses of 21.3 nm, 11.4 nm, and 6.5 nm are experimentally studied. All of the EL spectra present a similar blue-shift under the low-level current injection, and then turns to a red-shift tendency when the current increases to a specific value, which is defined as the turning point. The value of this turning point differs from one another for the three InGaN/GaN MQW samples. Sample A, which has the GaN barrier thickness of 21.3 nm, shows the highest current injection level at the turning point as well as the largest value of blue-shift. It indicates that sample A has the maximum intensity of the polarization field. The red-shift of the EL spectra results from the vertical electron leakage in InGaN/GaN MQWs and the corresponding self-heating effect under the high-level current injection. As a result, it is an effective approach to evaluate the polarization field in the InGaN/GaN MQW structures by using the injection current level at the turning point and the blue-shift of the EL spectra profiles.
Keywords:  InGaN/GaN multiple quantum well (MQW)      polarization field      electroluminescence spectra shift      electron leakage current  
Received:  18 November 2019      Revised:  16 December 2019      Accepted manuscript online: 
PACS:  42.55.Px (Semiconductor lasers; laser diodes)  
  73.21.Fg (Quantum wells)  
  78.60.Fi (Electroluminescence)  
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2016YFB0400803 and 2016YFB0401801) and the National Natural Science Foundation of China (Grant Nos. 61674138, 61674139, 61604145, 61574135, and 61574134).
Corresponding Authors:  De-Gang Zhao     E-mail:  dgzhao@red.semi.ac.cn

Cite this article: 

Ping Chen(陈平), De-Gang Zhao(赵德刚), De-Sheng Jiang(江德生), Jing Yang(杨静), Jian-Jun Zhu(朱建军), Zong-Shun Liu(刘宗顺), Wei Liu(刘炜), Feng Liang(梁锋), Shuang-Tao Liu(刘双韬), Yao Xing(邢瑶), Li-Qun Zhang(张立群) Evaluation of polarization field in InGaN/GaN multiple quantum well structures by using electroluminescence spectra shift 2020 Chin. Phys. B 29 034206

[1] Nakamura S 1997 Solid State Commun. 102 237
[2] Bernardini F, Fiorentini V and Vanderbilt D 1997 Phys. Rev. B 56 R10024
[3] Cho J, Schubert E F and Kim J K 2013 Laser Photon. Rev. 7 408
[4] Fujiwara K, Jimi H and Kaneda K 2009 Phys. Status Solidi C 6 S814
[5] Wang J X, Wang L, Zhao W, Hao Z B and Luo Y 2010 Appl. Phys. Lett. 97 201112
[6] Verzellesi G, Saguatti D, Meneghini M, Bertazzi F, Goano M, Meneghesso G and Zanoni E 2013 J. Appl. Phys. 114 071101
[7] Kim M H, Schubert M F, Dai Q, Kim J K, Schubert E F, Piprek J and Park Y 2007 Appl. Phys. Lett. 91 183507
[8] Xu J R, Schubert M F, Noemaun A N, Zhu D, Kim J K, Schubert E F, Kim M H, Chung H J, Yoon S, Sone C and Park Y 2009 Appl. Phys. Lett. 94 011113
[9] Wang C H, Chen J R, Chiu C H, Kuo H C, Li Y L, Lu T C and Wang S C 2010 IEEE Photon. Technol. Lett. 22 236
[10] Maier M, Köhler K, Kunzer M, Pletschen W and Wagner 2009 J. Appl. Phys. Lett. 94 041103
[11] Schubert M F and Schubert E F 2010 Appl. Phys. Lett. 96 131102
[12] Romanov A E, Baker T J, Nakamura S, Speck J S and Group E U 2006 J. Appl. Phys. 100 023522
[13] Ling S C, Lu T C, Chang S P, Chen J R, Kuo H C and Wang S C 2010 Appl. Phys. Lett. 96 231101
[14] Rishinaramangalam A K, Nami M, Fairchild M N, Shima D M, Balakrishnan G, Brueck S R J and Feezell D F 2016 Appl. Phys. Express 9 032101
[15] Xu J R, Schubert M F, Zhu D, Cho J, Schubert E F, Shim H and Sone C 2011 Appl. Phys. Lett. 99 041105
[16] Lee J H, Kim N S, Lee D Y and Lee J H 2009 IEEE Photon. Technol. Lett. 21 1151
[17] Tawfik W Z, Hyeon G Y and Lee J K 2014 J. Appl. Phys. 116 164503
[18] Li X, Zhao D G, Jiang D S, Chen P, Liu Z S, Zhu J J, Yang J, Liu W, He X G, Li X J, Liang F, Zhang L Q, Liu J P and Yang H 2016 Phys. Status Solidi A 213 2223
[19] Le L C, Zhao D G, Jiang D S, Chen P, Liu Z S, Zhu J J, Yang J, Li X J, He X G, Liu J P, Zhang S M and Yang H 2015 J. Vac. Sci. Technol. B 33 011209
[20] Yang J, Zhao D G, Jiang D S, Liu Z S, Chen P, Li L, Wu L L, Le L C, Li X J, He X G, Wang H, Zhu J J, Zhang S M, Zhang B S and Yang H 2013 Chin. Phys. B 22 098801
[21] Chen P, Feng M X, Jiang D S, Zhao D G, Liu Z S, Li L, Wu L L, Le L C, Zhu J J, Wang H, Zhang S M and Yang H 2012 J. Appl. Phys. 112 113105
[22] Wang T, Bai J, Sakai S and Ho J K 2001 Appl. Phys. Lett. 78 2617
[23] Wang T, Nakagawa D, Wang J, Sugahara T and Sakai S 1998 Appl. Phys. Lett. 73 3571
[24] Lai Y L, Liu C P, Lin Y H, Hsueh T H, Lin R M, Lyu D Y, Peng Z X and Lin T Y 2006 Nanotechnology 17 3734
[25] Yamashita Y, Tamura H, Horio N, Sato H, Taniguchi K, Chinone T, Omori S and Funaoka C 2003 Jpn. J. Appl. Phys. 42 4197
[26] Piprek J 2003 Semiconductor Optoelectronic Devices: Introduction to Physics and Simulation (San Diego: Academic Press) pp. 54-56
[27] Jho Y D, Yahng J S, Oh E and Kim D S 2002 Phys. Rev. B 66 035334
[28] Sizov D S, Bhat R, Zakharian A, Song K C, Allen D E, Coleman S and Zah C E 2011 IEEE J. Sel. Top. Quantum Electron. 17 1390
[29] Bochkareva N I, Bogatov A L, Gorbunov R I, Latyshev F E, Zubrilov A S, Tsyuk A I, Klochkov A V, Lelikov Y S, Rebane Y T and Shreter Y G 2009 Semiconductors 43 1499
[30] Tsai P C, Chuang R W and Su Y K 2007 J. Lightwave Technol. 25 591
[31] Shhajed S, Xi Y, Li Y L, Gessmann Th and Schubert E F 2005 J. Appl. Phys. 97 054506
[32] Efremov A A, Bochkareva N I, Gorbunov R I, Lavrinovich D A, Rebane Y T, Tarkhin D V and Shreter Y G 2006 Semiconductors 40 605
[1] Momentum-space polarization fields in two-dimensional photonic-crystal slabs: Physics and applications
Wen-Zhe Liu(刘文哲), Lei Shi(石磊), Che-Ting Chan(陈子亭), and Jian Zi(资剑). Chin. Phys. B, 2022, 31(10): 104211.
[2] Depolarization field in relaxor-based ferroelectric single crystals under one-cycle bipolar pulse drive
Chuan-Wen Chen(陈传文), Yang Xiang(项阳), Li-Guo Tang(汤立国), Lian Cui(崔莲), Bao-Qing Lin(林宝卿), Wei-Dong Du(杜伟东), Wen-Wu Cao(曹文武). Chin. Phys. B, 2019, 28(12): 127702.
[3] Selection of right-circular-polarized harmonics from p orbital of neon atom by two-color bicircular laser fields
Chang-Long Xia(夏昌龙), Yue-Yue Lan(兰悦跃), Qian-Qian Li(李倩倩), Xiang-Yang Miao(苗向阳). Chin. Phys. B, 2019, 28(10): 103203.
[4] Electron mobility limited by surface and interface roughness scatterings in AlxGa1-xN/GaN quantum wells
Wang Jian-Xia (王建霞), Yang Shao-Yan (杨少延), Wang Jun (王俊), Liu Gui-Peng (刘贵鹏), Li Zhi-Wei (李志伟), Li Hui-Jie (李辉杰), Jin Dong-Dong (金东东), Liu Xiang-Lin (刘祥林), Zhu Qin-Sheng (朱勤生), Wang Zhan-Guo (王占国). Chin. Phys. B, 2013, 22(7): 077305.
No Suggested Reading articles found!