Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(11): 114209    DOI: 10.1088/1674-1056/27/11/114209
Special Issue: TOPICAL REVIEW — Nanolasers
TOPICAL REVIEW—Nanolasers Prev   Next  

Research progress of low-dimensional metal halide perovskites for lasing applications

Zhen Liu(刘镇)1,2, Chun Li(李淳)1, Qiu-Yu Shang(尚秋宇)1, Li-Yun Zhao(赵丽云)1, Yang-Guang Zhong(钟阳光)1, Yan Gao(高燕)1, Wen-Na Du(杜文娜)3, Yang Mi(米阳)3, Jie Chen(陈杰)3, Shuai Zhang(张帅)3, Xin-Feng Liu(刘新风)3, Ying-Shuang Fu(付英双)2, Qing Zhang(张青)1
1 Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, China;
2 School of Physics and Wuhan National High Magnetic Field Center, Huazhong University of Science and Technology, Wuhan 430074, China;
3 Division of Nanophotonics, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
Abstract  

Metal halide perovskites have been regarded as remarkable materials for next-generation light-harvesting and light emission devices. Due to their unique optical properties, such as high absorption coefficient, high optical gain, low trapping-state density, and ease of band gap engineering, perovskites promise to be used in lasing devices. In this article, the recent progresses of microlasers based on reduced-dimensional structures including nanoplatelets, nanowires, and quantum dots are reviewed from both fundamental photophysics and device applications. Furthermore, perovskite-based plasmonic nanolasers and polariton lasers are summarized. Perspectives on perovskite-based small lasers are also discussed. This review can serve as an overview and evaluation of state-of-the-art micro/nanolaser science.

Keywords:  perovskite      nanostructure      laser      microlaser      emission  
Received:  01 March 2018      Revised:  04 September 2018      Accepted manuscript online: 
PACS:  42.55.Px (Semiconductor lasers; laser diodes)  
  42.55.Sa (Microcavity and microdisk lasers)  
  42.55.Tv (Photonic crystal lasers and coherent effects)  
Fund: 

Project supported by the National Key Research and Development Program of China (Grant Nos. 2017YFA0304600, 2017YFA0205700, and 2016YFA0200700), the National Natural Science Foundation of China (Grant Nos. 61774003 and 21673054), the Start-up Funding of Peking University, National Young 1000-talents Scholarship of China, the Open Research Fund Program of the State Key Laboratory of Low-Dimensional Quantum Physics, China (Grant No. KF201604), and the Key Research Program of Frontier Sciences, Chinese Academy of Sciences (Grant No. QYZDB-SSW-SYS031).

Corresponding Authors:  Ying-Shuang Fu, Ying-Shuang Fu     E-mail:  q_yfu@hust.edu.cn;q_zhang@pku.edu.cn

Cite this article: 

Zhen Liu(刘镇), Chun Li(李淳), Qiu-Yu Shang(尚秋宇), Li-Yun Zhao(赵丽云), Yang-Guang Zhong(钟阳光), Yan Gao(高燕), Wen-Na Du(杜文娜), Yang Mi(米阳), Jie Chen(陈杰), Shuai Zhang(张帅), Xin-Feng Liu(刘新风), Ying-Shuang Fu(付英双), Qing Zhang(张青) Research progress of low-dimensional metal halide perovskites for lasing applications 2018 Chin. Phys. B 27 114209

[1] Kim T I, McCall J G, Jung Y H, Huang X, Siuda E R, Li Y, Song J, Song Y M, Pao H A, Kim R H, Lu C, Lee S D, Song I S, Shin G, Al-Hasani R, Kim S, Tan M P, Huang Y, Omenetto F G, Rogers J A and Bruchas M R 2013 Science 340 211
[2] Gather M C and Yun S H 2011 Nat. Photon. 5 406
[3] Miller D A B 2009 Proc. IEEE 97 1166
[4] Smit M, van der Tol J and Hill M 2012 Laser Photon. Rev. 6 1
[5] Johnson J C, Choi H J, Knutsen K P, Schaller R D, Yang P and Saykally R J 2002 Nat. Mater. 1 106
[6] Huang M H, Mao S, Feick H, Yan H, Wu Y, Kind H, Weber E, Russo R and Yang P 2001 Science 292 1897
[7] Zhang Q, Su R, Du W, Liu X, Zhao L, Ha S T and Xiong Q 2017 Small Methods 1 1700163
[8] Chen S, Roh K, Lee J, Chong W K, Lu Y, Mathews N, Sum T C and Nurmikko A 2016 ACS Nano 10 3959
[9] Bergman D J and Stockman M I 2003 Phys. Rev. Lett. 90 027402
[10] Zheludev N I, Prosvirnin S L, Papasimakis N and Fedotov V A 2008 Nat. Photon. 2 351
[11] Hill M T, Marell M, Leong E S P, Smalbrugge B, Zhu Y, Sun M, van Veldhoven P J, Geluk E J, Karouta F, Oei Y S, Nötzel R, Ning C Z and Smit M K 2009 Opt. Express 17 11107
[12] Noginov M A, Zhu G, Belgrave A M, Bakker R, Shalaev V M, Narimanov E E, Stout S, Herz E, Suteewong T and Wiesner U 2009 Nature 460 1110
[13] Oulton R F, Sorger V J, Zentgraf T, Ma R M, Gladden C, Dai L, Bartal G and Zhang X 2009 Nature 461 629
[14] Bajoni D 2012 J. Phys. D:Appl. Phys. 45 313001
[15] Zhang S, Shang Q, Du W, Shi J, Wu Z, Mi Y, Chen J, Liu F, Li Y, Liu M, Zhang Q and Liu X 2018 Adv. Opt. Mater. 6 1701032
[16] Kojima A, Teshima K, Shirai Y and Miyasaka T 2009 J. Am. Chem. Soc. 131 6050
[17] Kim H S, Lee C R, Im J H, Lee K B, Moehl T, Marchioro A, Moon S J, Humphry-Baker R, Yum J H, Moser J E, Grätzel M and Park N G 2012 Sci. Rep. 2 591
[18] Burschka J, Pellet N, Moon S J, Humphry-Baker R, Gao P, Nazeeruddin M K and Gratzel M 2013 Nature 499 316
[19] Jeon N J, Noh J H, Yang W S, Kim Y C, Ryu S, Seo J and Seok S I 2015 Nature 517 476
[20] Lee M M, Teuscher J, Miyasaka T, Murakami T N and Snaith H J 2012 Science 338 643
[21] Liu M, Johnston M B and Snaith H J 2013 Nature 501 395
[22] Saliba M, Orlandi S, Matsui T, Aghazada S, Cavazzini M, Correa-Baena J P, Gao P, Scopelliti R, Mosconi E, Dahmen K H, De Angelis F, Abate A, Hagfeldt A, Pozzi G, Graetzel M and Nazeeruddin M K 2016 Nat. Energy 1 15017
[23] Yang W S 2015 Science 348 1234
[24] Yang W S, Noh J H, Jeon N J, Kim Y C, Ryu S, Seo J and Seok S I 2015 Science 348 1234
[25] Zhou H, Chen Q, Li G, Luo S, Song T-b, Duan H S, Hong Z, You J, Liu Y and Yang Y 2014 Science 345 542
[26] Liu M, Johnston M B and Snaith H J 2013 Nature 501 395
[27] Tan Z K, Moghaddam R S, Lai M L, Docampo P, Higler R, Deschler F, Price M, Sadhanala A, Pazos L M, Credgington D, Hanusch F, Bein T, Snaith H J and Friend R H 2014 Nat. Nanotechnol. 9 687
[28] Li F, Ma C, Wang H, Hu W, Yu W, Sheikh A D and Wu T 2015 Nat. Commun. 6 8238
[29] Cho H, Jeong S H, Park M H, Kim Y H, Wolf C, Lee C L, Heo J H, Sadhanala A, Myoung N and Yoo S 2015 Science 350 1222
[30] Xing G, Mathews N, Lim S S, Yantara N, Liu X, Sabba D, Gratzel M, Mhaisalkar S and Sum T C 2014 Nat. Mater. 13 476
[31] Yu H, Ren K, Wu Q, Wang J, Lin J, Wang Z, Xu J, Oulton R F, Qu S and Jin P 2016 Nanoscale 8 19536
[32] Su R, Diederichs C, Wang J, Liew T C H, Zhao J, Liu S, Xu W, Chen Z and Xiong Q 2017 Nano Lett. 17 3982
[33] Sum T C and Mathews N 2014 Energy Environ. Sci. 7 2518
[34] Sutherl, B R and Sargent E H 2016 Nat. Photon. 10 295
[35] Stranks S D and Snaith H J 2015 Nat. Nanotechnol. 10 391
[36] Byrnes T, Kim N Y and Yamamoto Y 2014 Nat. Phys. 10 803
[37] Filippetti A and Mattoni A 2014 Phys. Rev. B 89 125203
[38] Borriello I, Cantele G and Ninno D 2008 Phys. Rev. B 77 235214
[39] Zhang Q, Ha S T, Liu X, Sum T C and Xiong Q 2014 Nano Lett. 14 5995
[40] Yuan M, Quan L N, Comin R, Walters G, Sabatini R, Voznyy O, Hoogl S, Zhao Y, Beauregard E M, Kanjanaboos P, Lu Z, Kim D H and Sargent E H 2016 Nat. Nanotechnol. 11 872
[41] Zhang X, Lin H, Huang H, Reckmeier C, Zhang Y, Choy W C H and Rogach A L 2016 Nano Lett. 16 1415
[42] Bade S G R, Li J, Shan X, Ling Y, Tian Y, Dilbeck T, Besara T, Geske T, Gao H, Ma B, Hanson K, Siegrist T, Xu C and Yu Z 2016 ACS Nano 10 1795
[43] Liang D, Peng Y, Fu Y, Shearer M J, Zhang J, Zhai J, Zhang Y, Hamers R J, Andrew T L and Jin S 2016 ACS Nano 10 6897
[44] Xing G, Kumar M H, Chong W K, Liu X, Cai Y, Ding H, Asta M, Gratzel M, Mhaisalkar S, Mathews N and Sum T C 2016 Adv. Mater. 28 8191
[45] Protesescu L, Yakunin S, Bodnarchuk M I, Krieg F, Caputo R, Hendon C H, Yang R X, Walsh A and Kovalenko M V 2015 Nano Lett. 15 3692
[46] Hao F, Stoumpos C C, Chang R P H and Kanatzidis M G 2014 J. Am. Chem. Soc. 136 8094
[47] Zhang F, Zhong H, Chen C, Wu X G, Hu X, Huang H, Han J, Zou B and Dong Y 2015 ACS Nano 9 4533
[48] Novoselov K S, Jiang D, Schedin F, Booth T J, Khotkevich V V, Morozov S V and Geim A K 2005 Proc. Natl. Acad. Sci. USA 102 10451
[49] Dean C R, Young A F, Meric I, Lee C, Wang L, Sorgenfrei S, Watanabe K, Taniguchi T, Kim P, Shepard K L and Hone J 2010 Nat. Nanotechnol. 5 722
[50] Xu Z Q, Zhang Y, Lin S, Zheng C, Zhong Y L, Xia X, Li Z, Sophia P J, Fuhrer M S, Cheng Y B and Bao Q 2015 ACS Nano 9 6178
[51] Li L, Yu Y, Ye G J, Ge Q, Ou X, Wu H, Feng D, Chen X H and Zhang Y 2014 Nat. Nanotechnol. 9 372
[52] Zhang Q, Ha S T, Liu X, Sum T C and Xiong Q 2014 Nano Lett. 14 5995
[53] Zhang Q, Su R, Liu X, Xing J, Sum T C and Xiong Q 2016 Adv. Funct. Mater. 26 6238
[54] Liu X, Niu L, Wu C, Cong C, Wang H, Zeng Q, He H, Fu Q, Fu W, Yu T, Jin C, Liu Z and Sum T C 2016 Adv. Sci. 3 1600137
[55] Wang G, Li D, Cheng H C, Li Y, Chen C Y, Yin A, Zhao Z, Lin Z, Wu H, He Q, Ding M, Liu Y, Huang Y and Duan X 2015 Sci. Adv. 1 1500613
[56] Wang K, Gu Z, Liu S, Sun W, Zhang N, Xiao S and Song Q 2016 J. Phys. Chem. Lett. 7 2549
[57] Duan X, Huang Y, Agarwal R and Lieber C M 2003 Nature 421 241
[58] Saxena D, Mokkapati S, Parkinson P, Jiang N, Gao Q, Tan H H and Jagadish C 2013 Nat. Photon. 7 963
[59] Hua B, Motohisa J, Kobayashi Y, Hara S and Fukui T 2009 Nano Lett. 9 112
[60] Zhu H, Fu Y, Meng F, Wu X, Gong Z, Ding Q, Gustafsson M V, Trinh M T, Jin S and Zhu X Y 2015 Nat. Mater. 14 636
[61] Xing J, Liu X F, Zhang Q, Ha S T, Yuan Y W, Shen C, Sum T C and Xiong Q 2015 Nano Lett. 15 4571
[62] Eaton S W, Lai M, Gibson N A, Wong A B, Dou L, Ma J, Wang L W, Leone S R and Yang P 2016 Proc. Natl. Acad. Sci. USA 113 1993
[63] Wang X, Shoaib M, Wang X, Zhang X, He M, Luo Z, Zheng W, Li H, Yang T, Zhu X, Ma L and Pan A 2018 ACS Nano 12 6170
[64] Im J H, Lee C R, Lee J W, Park S W and Park N G 2011 Nanoscale 3 4088
[65] Nozik A J 2009 Nat. Nanotechnol. 4 548
[66] Ning Z, Gong X, Comin R, Walters G, Fan F, Voznyy O, Yassitepe E, Buin A, Hoogl S and Sargent E H 2015 Nature 523 324
[67] Kan S, Mokari T, Rothenberg E and Banin U 2003 Nat. Mater. 2 155
[68] Yakunin S, Protesescu L, Krieg F, Bodnarchuk M I, Nedelcu G, Humer M, De Luca G, Fiebig M, Heiss W and Kovalenko M V 2015 Nat. Commun. 6 8056
[69] Wang Y, Li X, Song J, Xiao L, Zeng H and Sun H 2015 Adv. Mater. 27 7101
[70] Huang C Y, Zou C, Mao C, Corp K L, Yao Y C, Lee Y J, Schlenker C W, Jen A K Y and Lin L Y 2017 ACS Photon. 4 2281
[71] Sutherl B R, Hoogl S, Adachi M M, Wong C T O and Sargent E H 2014 ACS Nano 8 10947
[72] Gong Y, Ellis B, Shambat G, Sarmiento T, Harris J S and Vučković J 2010 Opt. Express 18 8781
[73] Hu Z, Liu Z, Bian Y, Li S, Tang X, Du J, Zang Z, Zhou M, Hu W, Tian Y and Leng Y 2018 Adv. Opt. Mater. 6 1700997
[74] Xing G, Mathews N, Lim S S, Yantara N, Liu X, Sabba D, Grätzel M, Mhaisalkar S and Sum T C 2014 Nat. Mater. 13 476
[75] Yablonovitch E 1987 Phys. Rev. Lett. 58 2059
[76] John S 1987 Phys. Rev. Lett. 58 2486
[77] Sanders J V 1964 Nature 204 1151
[78] Chen S, Zhang C, Lee J, Han J and Nurmikko A 2017 Adv. Mater. 29 1604781
[79] Saliba M, Wood S M, Patel J B, Nayak P K, Huang J, Alexander-Webber J A, Wenger B, Stranks S D, Horantner M T, Wang J T, Nicholas R J, Herz L M, Johnston M B, Morris S M, Snaith H J and Riede M K 2016 Adv. Mater. 28 923
[80] Jia Y, Kerner R A, Grede A J, Rand B P and Giebink N C 2017 Nat. Photon. 11 784
[81] Noginov M A, Zhu G, Belgrave A M, Bakker R, Shalaev V M, Narimanov E E, Stout S, Herz E, Suteewong T and Wiesner U 2009 Nature 460 1110
[82] Kwon S H, Kang J H, Seassal C, Kim S K, Regreny P, Lee Y H, Lieber C M and Park H G 2010 Nano Lett. 10 3679
[83] Ma R M, Oulton R F, Sorger V J, Bartal G and Zhang X 2011 Nat. Mater. 10 110
[84] Flynn R A, Kim C S, Vurgaftman I, Kim M, Meyer J R, Mäkinen A J, Bussmann K, Cheng L, Choa F S and Long J P 2011 Opt. Express 19 8954
[85] Marell M J H, Smalbrugge B, Geluk E J, van Veldhoven P J, Barcones B, Koopmans B, Nötzel R, Smit M K and Hill M T 2011 Opt. Express 19 15109
[86] Lakhani A M, Kim M K, Lau E K and Wu M C 2011 Opt. Express 19 18237
[87] Oulton R F, Sorger V J, Genov D A, Pile D F P and Zhang X 2008 Nat. Photon. 2 496
[88] Lu Y J, Kim J, Chen H Y, Wu C, Dabidian N, Sanders C E, Wang C Y, Lu M Y, Li B H, Qiu X, Chang W H, Chen L J, Shvets G, Shih C K and Gwo S 2012 Science 337 450
[89] Sidiropoulos T P H, Röder R, Geburt S, Hess O, Maier S A, Ronning C and Oulton R F 2014 Nat. Phys. 10 870
[90] Kasprzak J, Richard M, Kundermann S, Baas A, Jeambrun P, Keeling J M, Marchetti F M, Szymanska M H, Andre R, Staehli J L, Savona V, Littlewood P B, Deveaud B and Dang le S 2006 Nature 443 409
[91] Weisbuch C, Nishioka M, Ishikawa A and Arakawa Y 1992 Phys. Rev. Lett. 69 3314
[92] Tredicucci A, Chen Y, Pellegrini V V, Borger M, Sorba L, Beltram F and Bassani F 1995 Phys. Rev. Lett. 75 3906
[93] Dang L S, Heger D, André R, Bæuf F and Romestain R 1998 Phys. Rev. Lett. 81 3920
[94] Lanty G, Zhang S, Lauret J S, Deleporte E, Audebert P, Bouchoule S, Lafosse X, Zuniga-Perez J, Semond F, Lagarde D, Medard F and Leymarie J 2011 Phys. Rev. B 84 195449
[95] Bajoni D, Senellart P, Wertz E, Sagnes I, Miard A, Lemaitre A and Bloch J 2008 Phys. Rev. Lett. 100 047401
[96] Bhattacharya P, Xiao B, Das A, Bhowmick S and Heo J 2013 Phys. Rev. Lett. 110 206403
[97] Christopoulos S, von Hogersthal G B, Grundy A J, Lagoudakis P G, Kavokin A V, Baumberg J J, Christmann G, Butte R, Feltin E, Carlin J F and Grandjean N 2007 Phys. Rev. Lett. 98 126405
[98] Shalabney A, George J, Hutchison J, Pupillo G, Genet C and Ebbesen T W 2015 Nat. Commun. 6 5981
[99] Sanvitto D and Kéna-Cohen S 2016 Nat. Mater. 15 1061
[100] Lanty G, Lauret J S, Deleporte E, Bouchoule S and Lafosse X 2008 Appl. Phys. Lett. 93 081101
[101] Fujita T, Sato Y, Kuitani T and Ishihara T 1998 Phys. Rev. B 57 12428
[1] Electron beam pumping improves the conversion efficiency of low-frequency photons radiated by perovskite quantum dots
Peng Du(杜鹏), Yining Mu(母一宁), Hang Ren(任航), Idelfonso Tafur Monroy, Yan-Zheng Li(李彦正), Hai-Bo Fan(樊海波), Shuai Wang(王帅), Makram Ibrahim, and Dong Liang(梁栋). Chin. Phys. B, 2023, 32(4): 048704.
[2] Analytical determination of non-local parameter value to investigate the axial buckling of nanoshells affected by the passing nanofluids and their velocities considering various modified cylindrical shell theories
Soheil Oveissi, Aazam Ghassemi, Mehdi Salehi, S.Ali Eftekhari, and Saeed Ziaei-Rad. Chin. Phys. B, 2023, 32(4): 046201.
[3] Mode characteristics of VCSELs with different shape and size oxidation apertures
Xin-Yu Xie(谢新宇), Jian Li(李健), Xiao-Lang Qiu(邱小浪), Yong-Li Wang(王永丽), Chuan-Chuan Li(李川川), Xin Wei(韦欣). Chin. Phys. B, 2023, 32(4): 044206.
[4] Pressure-induced structural transition and low-temperature recovery of sodium pentazolate
Zitong Zhao(赵梓彤), Ran Liu(刘然), Linlin Guo(郭琳琳), Shuang Liu(刘爽), Minghong Sui(隋明宏), Bo Liu(刘波), Zhen Yao(姚震), Peng Wang(王鹏), and Bingbing Liu(刘冰冰). Chin. Phys. B, 2023, 32(4): 046202.
[5] Coexisting lattice contractions and expansions with decreasing thicknesses of Cu (100) nano-films
Simin An(安思敏), Xingyu Gao(高兴誉), Xian Zhang(张弦), Xin Chen(陈欣), Jiawei Xian(咸家伟), Yu Liu(刘瑜), Bo Sun(孙博), Haifeng Liu(刘海风), and Haifeng Song(宋海峰). Chin. Phys. B, 2023, 32(3): 036804.
[6] Prediction of one-dimensional CrN nanostructure as a promising ferromagnetic half-metal
Wenyu Xiang(相文雨), Yaping Wang(王亚萍), Weixiao Ji(纪维霄), Wenjie Hou(侯文杰),Shengshi Li(李胜世), and Peiji Wang(王培吉). Chin. Phys. B, 2023, 32(3): 037103.
[7] Impact of amplified spontaneous emission noise on the SRS threshold of high-power fiber amplifiers
Wei Liu(刘伟), Shuai Ren(任帅), Pengfei Ma(马鹏飞), and Pu Zhou(周朴). Chin. Phys. B, 2023, 32(3): 034202.
[8] Anti-symmetric sampled grating quantum cascade laser for mode selection
Qiangqiang Guo(郭强强), Jinchuan Zhang(张锦川), Fengmin Cheng(程凤敏), Ning Zhuo(卓宁), Shenqiang Zhai(翟慎强), Junqi Liu(刘俊岐), Lijun Wang(王利军),Shuman Liu(刘舒曼), and Fengqi Liu(刘峰奇). Chin. Phys. B, 2023, 32(3): 034209.
[9] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[10] Suppression of laser power error in a miniaturized atomic co-magnetometer based on split ratio optimization
Wei-Jia Zhang(张伟佳), Wen-Feng Fan(范文峰), Shi-Miao Fan(范时秒), and Wei Quan(全伟). Chin. Phys. B, 2023, 32(3): 030701.
[11] Phase-coherence dynamics of frequency-comb emission via high-order harmonic generation in few-cycle pulse trains
Chang-Tong Liang(梁畅通), Jing-Jing Zhang(张晶晶), and Peng-Cheng Li(李鹏程). Chin. Phys. B, 2023, 32(3): 033201.
[12] Mid-infrared lightly Er3+-doped CaF2 laser under acousto-optical modulation
Yuan-Hao Zhao(赵元昊), Meng-Yu Zong(宗梦雨), Jia-Hao Dong(董佳昊), Zhen Zhang(张振), Jing-Jing Liu(刘晶晶), Jie Liu(刘杰), and Liang-Bi Su(苏良碧). Chin. Phys. B, 2023, 32(3): 034203.
[13] A kind of multiwavelength erbium-doped fiber laser based on Lyot filter
Zhehai Zhou(周哲海), Jingyi Wu(吴婧仪), Kunlong Min(闵昆龙), Shuang Zhao(赵爽), and Huiyu Li(李慧宇). Chin. Phys. B, 2023, 32(3): 034205.
[14] Continuous-wave optical enhancement cavity with 30-kW average power
Xing Liu(柳兴), Xin-Yi Lu(陆心怡), Huan Wang(王焕), Li-Xin Yan(颜立新), Ren-Kai Li(李任恺), Wen-Hui Huang(黄文会), Chuan-Xiang Tang(唐传祥), Ronic Chiche, and Fabian Zomer. Chin. Phys. B, 2023, 32(3): 034206.
[15] Laser shaping and optical power limiting of pulsed Laguerre-Gaussian laser beams of high-order radial modes in fullerene C60
Jie Li(李杰), Wen-Hui Guan(管文慧), Shuo Yuan(袁烁), Ya-Nan Zhao(赵亚男), Yu-Ping Sun(孙玉萍), and Ji-Cai Liu(刘纪彩). Chin. Phys. B, 2023, 32(2): 024203.
No Suggested Reading articles found!