Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(2): 029202    DOI: 10.1088/1674-1056/27/2/029202
Special Issue: TOPICAL REVIEW — Soft matter and biological physics
TOPIC REVIEW—Soft matter and biological physics Prev  

Surface-tension-confined droplet microfluidics

Xinlian Chen(陈新莲)1, Han Wu(伍罕)2, Jinbo Wu(巫金波)1
1. Materials Genome Institute, Shanghai University, Shanghai 200444, China;
2. College of Science, Shanghai University, Shanghai 200444, China
Abstract  

This article is a concise overview about the developing microfluidic systems named surface-tension-confined droplet microfluidics (STORMs). Different from traditional complexed droplet microfluidics which generated and confined the droplets by three-dimensional (3D) poly(dimethylsiloxane)-based microchannels, STORM systems provide twodimensional (2D) platforms for control of droplets. STORM devices utilize surface energy, with methods such as surface chemical modification and mechanical processing, to control the movement of fluid droplets. Various STORM devices have been readily prepared, with distinct advantages over conventional droplet microfluidics, which generated and confined the droplets by 3D poly(dimethylsiloxane)-based microchannels, such as significant reduction of energy consumption necessary for device operation, facile or even direct introduction of droplets onto patterned surface without external driving force such as a micropump, thus increased frequency or efficiency of droplets generation of specific STORM device, among others. Thus, STORM devices can be excellent alternatives for majority areas in droplet microfluidics and irreplaceable choices in certain fields by contrast. In this review, fabrication methods or strategies, manipulation methods or mechanisms, and main applications of STORM devices are introduced.

Keywords:  surface-tension-confined      droplet      microfluidics      micropatterning      wettability  
Received:  28 September 2017      Revised:  14 December 2017      Accepted manuscript online: 
PACS:  92.20.cn (Analytical chemistry)  
  79.60.Jv (Interfaces; heterostructures; nanostructures)  
  61.30.Hn (Surface phenomena: alignment, anchoring, anchoring transitions, surface-induced layering, surface-induced ordering, wetting, prewetting transitions, and wetting transitions)  
  05.70.Np (Interface and surface thermodynamics)  
Fund: 

Project supported by the Shanghai Pujiang Program (Grant No. 16PJ1403200) and the Research Grant (Grant No. 16DZ2260601) from Science and Technology

Corresponding Authors:  Jinbo Wu     E-mail:  jinbowu@t.shu.edu.cn
About author:  92.20.cn; 79.60.Jv; 61.30.Hn; 05.70.Np

Cite this article: 

Xinlian Chen(陈新莲), Han Wu(伍罕), Jinbo Wu(巫金波) Surface-tension-confined droplet microfluidics 2018 Chin. Phys. B 27 029202

[1] Teh S Y, Lin R, Hung L H and Lee A P 2008 Lab Chip 8 198
[2] Mashaghi S, Abbaspourrad A, Weitz D A and van Oijen A M 2016 TrAC Trends in Anal. Chem. 82 118
[3] Dendukuri D, Pregibon D C, Collins J, Hatton T A and Doyle P S 2006 Nat. Mater. 5 365
[4] Theberge A B, Mayot E, El Harrak A, Kleinschmidt F, Huck W T andGriffiths A D 2012 Lab Chip 12 1320
[5] Zhang L, Hao S, Liu B, Shum H C, Li J and Chen H 2013 ACS Appl. Mater. Interfaces 5 11489
[6] Martino C, Zagnoni M, Sandison M E, Chanasakulniyom M, Pitt A Rand Cooper J M 2011 Anal. Chem. 83 5361
[7] Chokkalingam V, Tel J, Wimmers F, Liu X, Semenov S, Thiele J, Figdor C G and Huck W T 2013 Lab Chip 13 4740
[8] Wang P, Jing F, Li G, Wu Z, Cheng Z, Zhang J, Zhang H, Jia C, Jin Q,Mao H and Zhao J 2015 Biosens Bioelectron 74 836
[9] Pekin D, Skhiri Y, Baret J C, Le Corre D, Mazutis L, Salem C B, MillotF, El Harrak A, Hutchison J B, Larson J W, Link D R, Laurent-Puig P,Griffiths A D and Taly V 2011 Lab Chip 11 2156
[10] You I, Yun N and Lee H 2013 Chemphyschem 14 471
[11] Wu J, Zhang M, Wang X, Li S and Wen W 2011 Langmuir 27 5705
[12] Bai H, Wang L, Ju J, Sun R, Zheng Y and Jiang L 2014 Adv. Mater. 26 5025
[13] Zhao J and Chen S 2017 Langmuir 33 5328
[14] Lam P, Wynne K J and Wnek G E 2002 Langmuir 18 948
[15] Malvadkar N A, Hancock M J, Sekeroglu K, Dressick W J and DemirelM C 2010 Nat. Mater. 9 1023
[16] Sun Y, Zhou X and Yu Y 2014 Lab Chip 14 3603
[17] Liu W W, Zhu Y, Feng Y M, Fang J and Fang Q 2017 Anal. Chem. 89 822
[18] Zhang Y, Zhu Y, Yao B and Fang Q 2011 Lab Chip 11 1545
[19] Zhu Y, Zhang Y X, Liu W W, Ma Y, Fang Q and Yao B 2015 Sci. Rep. 5 9551
[20] Sakakihara S, Araki S, Iino R and Noji H 2010 Lab Chip 10 3355
[21] Neto A I, Custódio C A, Song W and Mano J F 2011 Soft Matter 7 4147
[22] Kobaku S P, Kwon G, Kota A K, Karunakaran R G, Wong P, Lee D Hand Tuteja A 2015 ACS Appl. Mater. Interfaces 7 4075
[23] Li H, Yang Q, Li G, Li M, Wang S and Song Y 2015 ACS Appl. Mater. Interfaces 7 9060
[24] Beyazkilic P, Tuvshindorj U, Yildirim A, Elbuken C and Bayindir M2016 RSC Adv. 6 80049
[25] Geyer F L, Ueda E, Liebel U, Grau N and Levkin P A 2011 Angew. Chem. Int. Ed. 50 8424
[26] Ueda E, Geyer F L, Nedashkivska V and Levkin P A 2012 Lab Chip 12 5218
[27] Bruchmann J, Pini I, Gill T S, Schwartz T and Levkin P A 2017 Adv. Healthc. Mater. 6
[28] Feng W, Li L, Du X, Welle A and Levkin P A 2016 Adv. Mater. 28 3202
[29] Feng W, Li L, Ueda E, Li J, Heiβler S, Welle A, Trapp O and LevkinP A 2014 Adv. Mater. Interfaces 1 1400269
[30] Popova A A, Demir K, Hartanto T G, Schmitt E and Levkin P A 2016 RSC Adv. 6 38263
[31] Popova A A, Schillo S M, Demir K, Ueda E, Nesterov-Mueller A andLevkin P A 2015 Adv. Mater. 27 5217
[32] Zhang H, Oellers T, Feng W, Abdulazim T, Saw E N, Ludwig A, Levkin P A and Plumere N 2017 Anal. Chem. 89 5832
[33] Ganaja K A, Chaplan C A, Zhang J, Martinez N W and Martinez A W2017 Anal. Chem. 89 5333
[34] Du Y, Ghodousi M, Lo E, Vidula M K, Emiroglu O and Khademhosseini A 2010 Biotechnol. Bioeng. 105 655
[35] Xia Y, Mrksich M, Kim E and Whitesides G M 1995 J. Am. Chem. Soc. 117 9576
[36] Li J S, Ueda E, Nallapaneni A, Li L X and Levkin P A 2012 Langmuir 28 8286
[37] You I, Kang S M, Lee S, Cho Y O, Kim J B, Lee S B, Nam Y S andLee H 2012 Angew. Chem. Int. Ed. 51 6126
[38] Zhang L, Wu J, Hedhili M N, Yang Xand Wang P 2015 J. Mater. Chem. A 3 2844
[39] Wu J, Zhang L, Wang Y and Wang P 2017 Adv. Mater. Interfaces 4 1600801
[40] Lin L I, Chao S H and Meldrum D R 2009 PloS One 4 e6710
[41] Shi X, Chen C H, Gao W, Chao S H and Meldrum D R 2015 Lab Chip 15 1059
[42] Shi X, Lin L I, Chen S Y, Chao S H, Zhang W and Meldrum D R 2011 Lab Chip 11 2276
[43] Li Y, Chen P, Wang Y, Yan S, Feng X, Du W, Koehler S A, Demirci Uand Liu B F 2016 Adv. Mater. 28 3543
[44] Schutzius T M, Bayer I S, Jursich G M, Das A and Megaridis C M2012 Nanoscale 4 5378
[45] Yong J, Chen F, Yang Q and Hou X 2015 Soft Matter 11 8897
[46] Farshchian B, Gatabi J R, Bernick S M, Park S, Lee G H, Droopad Rand Kim N 2017 Appl. Surf. Sci. 396 359
[47] Bachus K J, Mats L, Choi H W, Gibson G T and Oleschuk R D 2017 ACS Appl. Mater. Interfaces 9 7629
[48] Neto A I, Correia C R, Custódio C A and Mano J F 2014 Adv. Funct. Mater. 24 5096
[49] Neto A I, Correia C R, Oliveira M B, Rial-Hermida M I, AlvarezLorenzo C, Reis R L and Mano J F 2015 Biomater. Sci. 3 581
[50] Yang X, Liu X, Lu Y, Song J, Huang S, Zhou S, Jin Z and Xu W 2016 J. Phys. Chem. C 120 7233
[51] Yang X, Liu X, Song J, Sun J, Lu X, Huang S, Chen F and Xu W 2016 Appl. Surf. Sci. 389 447
[52] Yang X, Song J, Zheng H, Deng X, Liu X, Lu X, Sun J and Zhao D2017 Lab Chip 17 1041
[53] Choi M K, Yoon H, Lee K and Shin K 2011 Langmuir 27 2132
[54] Chen C M, Chiang C L and Yang S 2015 Langmuir 31 9523
[55] Yang X M, Zhong Z W, Li E Q, Wang Z H, Xu W, Thoroddsen S T andZhang X X 2013 Soft Matter 9 11113
[56] Ai B, Wang L, Mohwald H, Yu Y, Zhao Z, Zhou Z, Zhang G and LinQ 2014 Sci. Rep. 4 6751
[57] Gürsoy M, Harris M T, Carletto A, Yaprak A E, Karaman M and Badyal J P S 2017 Colloids and Surfaces A:Physicochemical and Engineering Aspects 529 959
[58] Sekeroglu K and Demirel M C 2015 Polymer 58 30
[59] Agapov R L, Boreyko J B, Briggs D P, Srijanto B R, Retterer S T, Collier C P and Lavrik N V 2014 Adv. Mater. Interfaces 1 1400337
[60] Jang H, Lee H S, Lee K S and Kim D R 2017 ACS Appl. Mater. Interfaces 9 9213
[61] Huang C Y, Lai M F, Liu W L and Wei Z H 2015 Adv. Funct. Mater. 25 2670
[62] Jogia G E, Tronser T, Popova A A and Levkin P A 2016 Microarrays 5
[63] Popova A A, Depew C, Permana K M, Trubitsyn A, Peravali R, Ordiano J A, Reischl M and Levkin P A 2017 SLAS Technol. 22 163
[64] Songok J, Tuominen M, Teisala H, Haapanen J, Makela J, Kuusipalo Jand Toivakka M 2014 ACS Appl. Mater. Interfaces 6 20060
[65] Chu K H, Xiao R and Wang E N 2010 Nat. Mater. 9 413
[66] Liu C, Ju J, Ma J, Zheng Y and Jiang L 2014 Adv. Mater. 26 6086
[67] Chamakos N T, Karapetsas G and Papathanasiou A G 2016 Colloids and Surfaces A:Physicochemical and Engineering Aspects 511 180
[68] Chen T, Liu H, Teng S, Yan W, Yang H and Li J 2016 Journal of Vacuum Science & Technology A:Vacuum, Surfaces, and Films 34 061103
[69] Kong T, Brien R, Njus Z, Kalwa U and Pandey S 2016 Lab Chip 16 1861
[70] Drotlef D M, Blumler P, Papadopoulos P and Del Campo A 2014 ACS Appl. Mater. Interfaces 6 8702
[71] Wang L, Zhang M, Shi W, Hou Y, Liu C, Feng S, Guo Z and Zheng Y2015 Sci. Rep. 5 11209
[72] Almeida A V, Manz A and Neuzil P 2016 Lab Chip 16 1063
[73] Liberski A R, Delaney J T Jr and Schubert U S 2011 ACS Comb. Sci. 13 190
[74] Shin S, Lee J, Lee S, Kim H, Seo J, Kim D, Hong J, Lee S and Lee T2017 Small 13
[1] Crown evolution kinematics of a camellia oil droplet impacting on a liquid layer
Zhongyu Shi(石中玉), Guanqing Wang(王关晴), Xiangxiang Chen(陈翔翔), Lu Wang(王路), Ning Ding(丁宁), and Jiangrong Xu(徐江荣). Chin. Phys. B, 2022, 31(5): 054701.
[2] Numerical simulation of two droplets impacting upon a dynamic liquid film
Quan-Yuan Zeng(曾全元), Xiao-Hua Zhang(张小华), and Dao-Bin Ji(纪道斌). Chin. Phys. B, 2022, 31(4): 046801.
[3] Numerical simulation on partial coalescence of a droplet with different impact velocities
Can Peng(彭灿), Xianghua Xu(徐向华), and Xingang Liang(梁新刚). Chin. Phys. B, 2021, 30(5): 054703.
[4] Continuous droplet rebound on heated surfaces and its effects on heat transfer property: A lattice Boltzmann study
Qing-Yu Zhang(张庆宇), Qi-Peng Dong(董其鹏), Shan-Lin Wang(王山林), Zhi-Jun Wang(王志军), and Jian Zhou(周健). Chin. Phys. B, 2021, 30(4): 044703.
[5] Close-coupled nozzle atomization integral simulation and powder preparation using vacuum induction gas atomization technology
Peng Wang(汪鹏), Jing Li(李静), Xin Wang(王欣), Heng-San Liu(刘恒三), Bin Fan(范斌), Ping Gan(甘萍), Rui-Feng Guo(郭瑞峰), Xue-Yuan Ge(葛学元), and Miao-Hui Wang(王淼辉). Chin. Phys. B, 2021, 30(2): 027502.
[6] Effect of the liquid temperature on the interaction behavior for single water droplet impacting on the immiscible liquid
Tiantian Wang(汪甜甜), Changjian Wang(王昌建), Shengchao Rui(芮圣超), and Kai Pan(泮凯). Chin. Phys. B, 2021, 30(11): 116801.
[7] Dielectrowetting actuation of droplet: Theory and experimental validation
Yayan Huang(黄亚俨), Rui Zhao(赵瑞), Zhongcheng Liang(梁忠诚), Yue Zhang(张月), Meimei Kong(孔梅梅), and Tao Chen(陈陶). Chin. Phys. B, 2021, 30(10): 106801.
[8] Surface active agents stabilize nanodroplets and enhance haze formation
Yunqing Ma(马韵箐), Changsheng Chen(陈昌盛), and Xianren Zhang(张现仁). Chin. Phys. B, 2021, 30(1): 010504.
[9] Stable water droplets on composite structures formed by embedded water into fully hydroxylated β-cristobalite silica
Hanqi Gong(龚菡琪), Chonghai Qi(齐崇海), Junwei Yang(杨俊伟), Jige Chen(陈济舸), Xiaoling Lei(雷晓玲), Liang Zhao(赵亮), and Chunlei Wang(王春雷). Chin. Phys. B, 2021, 30(1): 010503.
[10] Ultradilute self-bound quantum droplets in Bose-Bose mixtures at finite temperature
Jia Wang(王佳), Xia-Ji Liu(刘夏姬), and Hui Hu(胡辉). Chin. Phys. B, 2021, 30(1): 010306.
[11] The drying of liquid droplets
Zechao Jiang(姜泽超), Xiuyuan Yang(杨修远), Mengmeng Wu(吴萌萌), Xingkun Man(满兴坤). Chin. Phys. B, 2020, 29(9): 096803.
[12] Droplets breakup via a splitting microchannel
Wei Gao(高崴), Cheng Yu(于程), Feng Yao(姚峰). Chin. Phys. B, 2020, 29(5): 054702.
[13] Electrohydrodynamic behaviors of droplet under a uniform direct current electric field
Zi-Long Deng(邓梓龙), Mei-Mei Sun(孙美美), Cheng Yu(于程). Chin. Phys. B, 2020, 29(3): 034703.
[14] Evaporation of saline colloidal droplet and deposition pattern
Hong-Hui Sun(孙弘辉), Wei-Bin Li(李伟斌), Wen-Jie Ji(纪文杰), Guo-Liang Dai(戴国亮), Yong Huan(郇勇), Yu-Ren Wang(王育人), Ding Lan(蓝鼎). Chin. Phys. B, 2020, 29(1): 014701.
[15] Microfluidic temperature sensor based on temperature-dependent dielectric property of liquid
Qi Liu(刘琦), Yu-Feng Yu(俞钰峰), Wen-Sheng Zhao(赵文生), Hui Li(李慧). Chin. Phys. B, 2020, 29(1): 010701.
No Suggested Reading articles found!