Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(1): 010505    DOI: 10.1088/1674-1056/21/1/010505
GENERAL Prev   Next  

Optimization criteria of a Bose Brayton heat engine

Wang Hao (汪浩) and Wu Guo-Xing(吴国兴)
Tianhua College, Shanghai Normal University, Shanghai 201815, China
Abstract  An irreversible cycle model of the quantum Bose Brayton engine is established, in which finite-time processes and irreversibilities in two adiabatic processes are taken into account. Based on the model, expressions for the power output and the efficiency are derived. By using a numerical computation, the optimal relationship between the power output and the efficiency of an irreversible Bose Brayton engine is obtained. The optimal regions of the power output and the efficiency are determined. It is found that the influences of the irreversibility and the quantum degeneracy on the main performance parameters of the Bose Brayton engine are remarkable. The results obtained in the present paper can provide some new theoretical information for the optimal design and the performance improvement of a real Brayton engine.
Keywords:  irreversibility      finite time thermodynamic      Bose Brayton engine      optimum criterion  
Received:  24 April 2011      Revised:  22 July 2011      Accepted manuscript online: 
PACS:  05.70.-a (Thermodynamics)  
  07.20.Mc (Cryogenics; refrigerators, low-temperature detectors, and other low-temperature equipment)  
  44.90.+c (Other topics in heat transfer)  
Fund: Project supported by the Program for Excellent Young Teachers Foundation of Shanghai, China (Grant No. thc-20100036).

Cite this article: 

Wang Hao (汪浩) and Wu Guo-Xing(吴国兴) Optimization criteria of a Bose Brayton heat engine 2012 Chin. Phys. B 21 010505

[1] Geva E and Kosloff R 1992 J. Chem. Phys. 96 3054
[2] Wu F, Chen L, Sun F and Wu C 2006 J. Chem. Phys. 124 214702
[3] Wu F, Chen L, Sun F, Wu C and Li Q 2006 Phys. Rev. E 73 016103
[4] Liu X, Chen L, Wu F and Sun F 2010 Phys. Scr. 81 025003
[5] Kosloff R 1984 J. Chem. Phys. 80 1625
[6] Lin B and Chen J 2003 Phys. Rev. E 67 046105
[7] Wang J, He J and Mao Z 2007 Sci. China Ser. G-Phys Mech. Astron. 50 163
[8] He J, He X and Tang W 2009 Sci. China Ser. G-Phys Mech. Astron. 52 1317
[9] Sisman A and Saygimath n H 1999 J. Phys. D: Appl. Phys. 32 664
[10] Sisman A and Saygin H 2001 Appl. Energy 68 367
[11] Wu F, Chen L, Sun F, Wu C, Guo F and Li Q 2006 Energy Convers. Manage. 47 3008
[12] Chen L, Sun F and Wu C 2004 Appl. Energy 79 3
[13] Parlak A, Sahin B and Yasar H 2004 Energy Convers. Manage. 45 1219
[14] Ust Y, Sahin B and Sogut O S 2005 Appl. Energy 82 23
[15] Zhao Y and Chen J 2007 Energy Convers. Manage. 48 2595
[16] Chen J, Zhao Y and He J 2006 Appl. Energy 83 228
[17] Wu C, Puzinauskas P V and Tsai J S 2003 Appl. Therm. Eng. 23 511
[18] Zhao Y and Chen J 2007 Appl. Therm. Eng. 27 2051
[19] Zhao Y and Chen J 2006 Appl. Energy 83 789
[20] He J, Wu X and Ouyang W 2006 Int. J. Thermal Sci. 45 938
[21] Lin B and Chen J 2005 Phys. Scr. 71 12
[22] Zhang Y, Lin B and Chen J 2006 Phys. Scr. 73 48
[23] Wang H, Liu S and He J 2008 Physica B 403 3867
[24] He J, Wang H and Liu S 2009 Energy Convers. Manage. 50 933
[25] Wang H, Liu S and Du J 2009 Phys. Scr. 79 055004
[26] Wang H, Liu S and He J 2009 Appl. Therm. Eng. 29 706
[27] Wang H, Liu S and He J 2009 J. Appl. Phys. 105 083534
[28] Bejan A 1996 J. Appl. Phys. 79 1191
[29] Chen L, Wu C and Sun F 1999 J. Non-Equilib. Thermodyn. 24 327
[30] Chen L, Wang W, Sun F and Wu C 2004 Appl. Energy 77 429
[31] Ni N, Chen L, Wu C and Sun F 1999 Energy Convers. Manage. 40 393
[32] Ust Y, Sahin B, Kodal A and Akcay I H 2006 Appl. Energy 83 558
[33] Chen L, Zheng J, Sun F and Wu C 2001 J. Phys. D: Appl. Phys. 34 1727
[34] Wang W, Chen L, Sun F and Wu C 2003 Energy Convers. Manage. 44 2713.
[35] Chen L, Wang J and Sun F 2008 Math. Comput. Model. 48 527
[36] Wu F, Chen L, Sun F and Wu C 2006 J. Appl. Phys. 99 054904
[37] Saygimath n H and Sisman A 2001 Appl. Energy 69 77
[38] Yang Y, Lin B and Chen J 2006 Appl. Energy 83 99
[39] Lin B and Chen J 2004 Open Syst. Inf. Dyn. 11 87
[40] Wang W, Chen L, Sun F and Wu C 2005 Appl. Therm. Eng. 25 1097
[41] Zhang Y, Chen J, He J and Wu C 2007 Appl. Therm. Eng. 27 401
[42] Zhang Y, Lin B and Chen J 2007 Renew. Energy 32 856
[43] Chen L, Zheng J, Sun F and Wu C 2001 J. Phys. D: Appl. Phys. 34 422
[44] Roco J M, Velasco S and Medina A 1997 J. Appl. Phys. 82 2735
[45] Pathria P K 1972 Statistical Mechanics (London: Pergamon Press Ltd)
[46] Ge Y, Chen L, Sun F and Wu C 2005 Appl. Energy 81 397
[47] Angulo-Brown F and Rocha-Martinez J A 1996 J. Phys. D: Appl. Phys. 29 80
[1] Analyses of an air conditioning system with entropy generation minimization and entransy theory
Yan-Qiu Wu(吴艳秋), Li Cai(蔡黎), Hong-Juan Wu(吴鸿娟). Chin. Phys. B, 2016, 25(6): 060507.
[2] Optimization of combined endoreversible Carnot heat engines with different objectives
Cheng Xue-Tao (程雪涛), Liang Xin-Gang (梁新刚). Chin. Phys. B, 2015, 24(6): 060510.
[3] Controlling cooperativity of a metastable open system coupled weakly to a noisy environment
Victor I. Teslenko, Oleksiy L. Kapitanchuk, Zhao Yang. Chin. Phys. B, 2015, 24(2): 028702.
[4] Ecological optimization for an irreversible magnetic Ericsson refrigeration cycle
Wang Hao (汪浩), Wu Guo-Xing (吴国兴). Chin. Phys. B, 2013, 22(8): 087501.
[5] Irreversibility of a quantum walk induced by controllable decoherence employing random unitary operations
Xu You-Yang(徐酉阳), Zhou Fei(周飞), Chen Liang(陈亮) Xie Yi(谢艺), Xue Peng(薛鹏), and Feng Mang(冯芒) . Chin. Phys. B, 2012, 21(4): 040304.
[6] Magnetization study of ITER-type internal-Sn Nb3Sn superconducting wire
Zhang Chao-Wu(张超武), Zhou Lian(周廉), Andre Sulpice, Jean-Louis Soubeyroux, Christophe Verwaerde, Gia Ky Hoang, Zhang Ping-Xiang(张平祥), Lu Ya-Feng(卢亚峰), and Tang Xian-De(唐先德). Chin. Phys. B, 2007, 16(6): 1764-1769.
No Suggested Reading articles found!