Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(8): 080207    DOI: 10.1088/1674-1056/19/8/080207
GENERAL Prev   Next  

Enhancing synchronizability by rewiring networks

Wang Li-Fu(王立夫)a) b), Wang Qing-Li(王庆利)c), Kong Zhi(孔芝) a), and Jing Yuan-Wei(井元伟)b)
a Department of Automation and Engineering, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China; School of Information Science and Engineering, Northeastern University, Shenyang 110004, China; c Department of Information and Engineering, Shenyang Institute of Engineering, Shenyang 110136, China
Abstract  According to different forms of synchronized region, complex networks are divided into type I (unbounded synchronization region) and type II (bounded synchronization region) networks. This paper presents a rewiring algorithm to enhance the synchronizability of type I and type II networks. By utilizing the algorithm for an unweighted and undirected network, a better synchronizability of network with the same number of nodes and edges can be obtained. Numerical simulations on several different network models are used to support the proposed procedure. The relationship between different topological properties of the networks and the number of rewirings are shown. It finds that the final optimized network is independent of the initial network, and becomes homogeneous. In addition the optimized networks have similar structural properties in the sense of degree, and node and edge betweenness centralities. However, they do not have similar cluster coefficients for type II networks. The research may be useful for designing more synchronizable networks and understanding the synchronization behaviour of networks.
Keywords:  synchronizability      rewire networks      complex networks      optimized network      network structural property  
Received:  12 October 2009      Revised:  06 December 2009      Accepted manuscript online: 
PACS:  89.75.Hc (Networks and genealogical trees)  
  02.60.Cb (Numerical simulation; solution of equations)  
  84.30.Bv (Circuit theory)  
Fund: Project supported by the Science Foundation of the Education Bureau of Liaoning Province of China (Grant No. 2008497).

Cite this article: 

Wang Li-Fu(王立夫), Wang Qing-Li(王庆利), Kong Zhi(孔芝), and Jing Yuan-Wei(井元伟) Enhancing synchronizability by rewiring networks 2010 Chin. Phys. B 19 080207

[1] Newman M E J 2003 wxSIAM Rev. 45 167
[2] Albert R and Barab'asi A L 2002 wxRev. Mod. Phys. 74 47
[3] Dorogovtsev S N and Mendes J F F 2002 wxAdv. Phys. 51 1079
[4] Li Z Q, Duan Z S and Chen G R 2009 wxChin. Phys. B 18 1674
[5] Zou Y L and Chen G R 2009 wxChin. Phys. B 18 3337
[6] Olfati-Saber R, Fax J A and Murray R M 2007 wxProc. IEEE 95 215
[7] Korniss G, Novotny M A, Guclu H, Toroczkai Z and Rikvold P A 2003 wxScience 299 677
[8] Barbarossa S and Scutari G 2007 wxIEEE Trans. Signal Process 55 3456
[9] Pecora L M and Carroll T L 1998 wxPhys. Rev. Lett. 80 2109
[10] Kocarev L and Amato P 2005 wxChaos 15 024101
[11] Wang X F and Chen G R 2002 wxIEEE Circuits Syst. I 49 54.
[12] Barahona M and Pecora L M 2002 wxPhys. Rev. Lett. 89 054101.
[13] Jalili M, Ajdari Rad A and Hasler M 2007 wxInt. J. Circuit Theory Appl. 35 611
[14] Chavez M, Hwang D U, Amann A, Hentschel H G E and Boccaletti S 2005 wxPhys. Rev. Lett. 94 218701
[15] Jalili M, Ajdari Rad A and Hasler M 2008 wxPhys. Rev. E 78 016105
[16] Wang X, Lai Y C and Lai C H 2007 wxPhys. Rev. E 75 056205
[17] Motter A E, Zhou C S and Kurths J 2005 wxEurophys. Lett. 69 334
[18] Motter A E, Zhou C S and Kurths J 2005 wxPhys. Rev. E 71 016116
[19] Donetti L, Hurtado P I and Munoz M A 2005 wxPhys. Rev. Lett. 95 188701.
[20] Donetti L, Hurtado P I and Munoz M A 2008 wxJ. Phys. A: Math. Theor. 41 224008
[21] Hagberg A and Schult D A 2008 wxChaos 18 037105.
[22] Fink K S, Johnson G, Carroll T L, Mar D and Pecora L M 2000 wxPhys. Rev. E 61 5080
[23] Merris R 1994 wxLinear Algebra Appl. 198 143
[24] Ghosh A and Boyd S 2006 wxIEEE Conference on Decision and Control6 605
[25] Barab'asi A L and Albert R 1999 wxScience 286 509
[26] Newman M E J and Watts D J 1999 wxPhys. Let. A 263 341
[27] Erd"os P and R'enyi A 1959 wxPubl. Math. Inst. Hung. Acad. Sci. 5 17
[28] G'omez-Garde nes J and Moreno Y 2006 wxPhys. Rev. E 73 056124
[29] Freeman L C 1977 wxSociometry 40 35
[30] Newman M E J 2001 wxPhys. Rev. E 64 016132
[31] Girvan M and Newman M E J 2002 wxProc. Nat. Acad. Sci. USA 99 7821
[32] Watts D J and Strogatz S 1998 wxNature 393 440
[33] Merris R 1998 wxLinear Algebra Appl. 278 221
[34] Schnitzler A and Gross J 2005 wxNat. Rev. Neurosci. 6 285
[35] Earn D J D, Levin S A and Rohani P 2000 wxScience 290 1360
[1] Analysis of cut vertex in the control of complex networks
Jie Zhou(周洁), Cheng Yuan(袁诚), Zu-Yu Qian(钱祖燏), Bing-Hong Wang(汪秉宏), and Sen Nie(聂森). Chin. Phys. B, 2023, 32(2): 028902.
[2] Vertex centrality of complex networks based on joint nonnegative matrix factorization and graph embedding
Pengli Lu(卢鹏丽) and Wei Chen(陈玮). Chin. Phys. B, 2023, 32(1): 018903.
[3] Characteristics of vapor based on complex networks in China
Ai-Xia Feng(冯爱霞), Qi-Guang Wang(王启光), Shi-Xuan Zhang(张世轩), Takeshi Enomoto(榎本刚), Zhi-Qiang Gong(龚志强), Ying-Ying Hu(胡莹莹), and Guo-Lin Feng(封国林). Chin. Phys. B, 2022, 31(4): 049201.
[4] Robust H state estimation for a class of complex networks with dynamic event-triggered scheme against hybrid attacks
Yahan Deng(邓雅瀚), Zhongkai Mo(莫中凯), and Hongqian Lu(陆宏谦). Chin. Phys. B, 2022, 31(2): 020503.
[5] Finite-time synchronization of uncertain fractional-order multi-weighted complex networks with external disturbances via adaptive quantized control
Hongwei Zhang(张红伟), Ran Cheng(程然), and Dawei Ding(丁大为). Chin. Phys. B, 2022, 31(10): 100504.
[6] LCH: A local clustering H-index centrality measure for identifying and ranking influential nodes in complex networks
Gui-Qiong Xu(徐桂琼), Lei Meng(孟蕾), Deng-Qin Tu(涂登琴), and Ping-Le Yang(杨平乐). Chin. Phys. B, 2021, 30(8): 088901.
[7] Complex network perspective on modelling chaotic systems via machine learning
Tong-Feng Weng(翁同峰), Xin-Xin Cao(曹欣欣), and Hui-Jie Yang(杨会杰). Chin. Phys. B, 2021, 30(6): 060506.
[8] Exploring individuals' effective preventive measures against epidemics through reinforcement learning
Ya-Peng Cui(崔亚鹏), Shun-Jiang Ni (倪顺江), and Shi-Fei Shen(申世飞). Chin. Phys. B, 2021, 30(4): 048901.
[9] Influential nodes identification in complex networks based on global and local information
Yuan-Zhi Yang(杨远志), Min Hu(胡敏), Tai-Yu Huang(黄泰愚). Chin. Phys. B, 2020, 29(8): 088903.
[10] Identifying influential spreaders in complex networks based on entropy weight method and gravity law
Xiao-Li Yan(闫小丽), Ya-Peng Cui(崔亚鹏), Shun-Jiang Ni(倪顺江). Chin. Phys. B, 2020, 29(4): 048902.
[11] Modeling and analysis of the ocean dynamic with Gaussian complex network
Xin Sun(孙鑫), Yongbo Yu(于勇波), Yuting Yang(杨玉婷), Junyu Dong(董军宇)†, Christian B\"ohm, and Xueen Chen(陈学恩). Chin. Phys. B, 2020, 29(10): 108901.
[12] Pyramid scheme model for consumption rebate frauds
Yong Shi(石勇), Bo Li(李博), Wen Long(龙文). Chin. Phys. B, 2019, 28(7): 078901.
[13] Theoretical analyses of stock correlations affected by subprime crisis and total assets: Network properties and corresponding physical mechanisms
Shi-Zhao Zhu(朱世钊), Yu-Qing Wang(王玉青), Bing-Hong Wang(汪秉宏). Chin. Phys. B, 2019, 28(10): 108901.
[14] Coordinated chaos control of urban expressway based on synchronization of complex networks
Ming-bao Pang(庞明宝), Yu-man Huang(黄玉满). Chin. Phys. B, 2018, 27(11): 118902.
[15] Detecting overlapping communities based on vital nodes in complex networks
Xingyuan Wang(王兴元), Yu Wang(王宇), Xiaomeng Qin(秦小蒙), Rui Li(李睿), Justine Eustace. Chin. Phys. B, 2018, 27(10): 100504.
No Suggested Reading articles found!