Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(11): 110303    DOI: 10.1088/1674-1056/19/11/110303
GENERAL Prev   Next  

Entanglement of two atoms interacting with a dissipative coherent cavity field without rotating wave approximation

Kang Guo-Dong(康国栋), Fang Mao-Fa(方卯发), Ouyang Xi-Cheng(欧阳锡城), and Deng Xiao-Juan(邓小娟)
College of Physics and Information Science, Hunan Normal University, Changsha 410081, China
Abstract  Considering two identical two-level atoms interacting with a single-model dissipative coherent cavity field without rotating wave approximation, we explore the entanglement dynamics of the two atoms prepared in different states using concurrence. Interestingly, our results show that the entanglement between the two atoms that initially disentangled will come up to a large constant rapidly, and then keeps steady in the following time or always has its maximum when prepared in some special Bell states. The model considered in this study is a good candidate for quantum information processing especially for quantum computation as steady high-degree atomic entanglement resource obtained in dissipative cavity.
Keywords:  atomic entanglement      Tavis–Cummings model      rotating wave approximation      characteristic function  
Received:  01 August 2009      Revised:  07 June 2010      Accepted manuscript online: 
PACS:  03.65.Ud (Entanglement and quantum nonlocality)  
  37.10.Vz (Mechanical effects of light on atoms, molecules, and ions)  
  42.50.Dv (Quantum state engineering and measurements)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10374025), the Education Ministry of Hunan Province, China (Grant No. 06A038) and the Natural Science Foundation of Hunan Province, China (Grant No. 07JJ3013).

Cite this article: 

Kang Guo-Dong(康国栋), Fang Mao-Fa(方卯发), Ouyang Xi-Cheng(欧阳锡城), and Deng Xiao-Juan(邓小娟) Entanglement of two atoms interacting with a dissipative coherent cavity field without rotating wave approximation 2010 Chin. Phys. B 19 110303

[1] Nilesen M A and Chang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
[2] Bennet C H, Brassard G and Vepeau C 1993 Phys. Rev. Lett. 70 1895
[3] Bennet C H and Wiesner S J 1992 Phys. Rev. Lett. 69 2881
[4] Ekert A 1991 Phys. Rev. Lett. 67 661
[5] Giovannetti V, Lloyd S and Maccone L 2001 Nature bf 412 417
[6] Giovannetti V, Lloyd S and Maccone L 2002 Phys. Rev. A 65 022309
[7] Zeng K and Fang M F 2005 Chin. Phys. 14 2009
[8] Jin L J and Fang M F 2006 Chin. Phys. bf 15 2012
[9] Jiang C L, Fang M F and Zheng X J 2006 Chin. Phys. 15 2953
[10] Song J and Cao Z L 2005 Acta Phys. Sin. 54 696 (in Chinese)
[11] Wu Y, Payne M G, Hagley E W and Deng L 2004 Phys. Rev. A 70 063812
[12] Yuan C H, Ou Y C and Zhang Z M 2006 Chin. Phys. bf 15 1793
[13] Tessier T E, Deutsch I H, Delgado A and Fuentes-Guridi I 2003 Phys. Rev. A 68 062316
[14] Fujii K, Higashida K, Kato R, Suzuki T and Wada Y 2004 quant-Ph/0404034
[15] Cai J F 2004 quant-ph/0405176
[16] Wang X Y, Du S D and Chen X S 2006 J. Phys. B 39 3805
[17] Retzker A, Solano E and Reznik B 2007 Phys. Rev. A 75 022312
[18] L'opez C E, Christ H, Retamal J C and Solano E 2007 Phys. Rev. A 75 033818
[19] L'opez C E, Lastra F, Romero G and Retamal J C 2007 Phys. Rev. A 75 022107
[20] Chen L, Shao X Q and Zhang S 2009 Chin. Phys. B 18 888
[21] Guo L and Liang X T 2009 Acta Phys. Sin. 58 50 (in Chinese)
[22] Zhang G F and Bu J J 2010 Acta Phys. Sin. 59 1462 (in Chinese)
[23] Leibfried D, Blatt R, Monroe C and Wineland D 2003 Rev. Mod. Phys. 75 281
[24] Irish E K and Schwab K 2003 Phys. Rev. B 68 155311
[25] Wallraf A, Schuster D I , Blais A, Frunzio L, Majer J, Devoret M H, Girvin S M and Schoelkopf R J 2004 Nature 431 162
[26] Chiorescu I, Bertet P, Semba K, Nakamura Y, Harmans C J P M and Mooil J E 2004 Nature 431 159
[27] Meiser D and Meystre P 2006 quntum-ph/ 0605020
[28] Li G X and Peng J S1992 Acta Phys. Sin. bf 41 766 (in Chinese)
[29] Peng J S and Li G X 1992 Phys. Rev. A 45 3289
[30] Peng J S and Li G X 1991 Acta Phys. Sin. 40 1042 (in Chinese)
[31] Cui H P, Zou J, Li J G and Shao B 2006 J. Phys. B 40 S143
[32] Lougovski P, Casagrande F, Lulli A and Solano E 2007 Phys. Rev. A 76 033802
[33] Lougovski P, Casagrande F, Lulli A, Englert B G, Solano E and Walther H 2004 Phys. Rev. A 69 023812
[34] Cahill K E and Glauber R J 1969 Phys. Rev. 177 1882
[35] Barnett S M and Radmore P M 1997 Methods in Theoretical Quantum Optics (Oxford: Clarendon press)
[36] Beige A, Bose S, Braun D, Huelga S F and Knight P L 2002 J. Mod. Opt. 47 2583
[37] Cabrillo C, Cirac J I, Garcia-Fernandez P and Zoller P 1999 Phys. Rev. A 59 1025
[38] Fang M F and Zhu S Y 2006 Physica A 369 475
[39] Plenio B M and Huega S F 2002 Phys. Rev. Lett. bf 88 197901
[1] Formalism of rotating-wave approximation in high-spin system with quadrupole interaction
Wen-Kui Ding(丁文魁) and Xiao-Guang Wang(王晓光). Chin. Phys. B, 2023, 32(3): 030301.
[2] Steady-state entanglement and heat current of two coupled qubits in two baths without rotating wave approximation
Mei-Jiao Wang(王美姣), Yun-Jie Xia(夏云杰). Chin. Phys. B, 2019, 28(6): 060303.
[3] Quantum pseudodots under the influence of external vector and scalar fields
M Eshghi, S M Ikhdair. Chin. Phys. B, 2018, 27(8): 080303.
[4] Comparison between non-Markovian dynamics with and without rotating wave approximation
Tang Ning (唐宁), Xu Tian-Tian (徐甜甜), Zeng Hao-Sheng (曾浩生). Chin. Phys. B, 2013, 22(3): 030304.
[5] The separability of two-mode Gaussian state under amplification and symmetric damping
Chen Xiao-Yu (陈小余), Jiang Li-Zhen (蒋丽珍), and Wu Liang-Neng (邬良能). Chin. Phys. B, 2007, 16(8): 2237-2243.
[6] Characteristic functional structure of infinitesimal symmetry transformations of Birkhoffian systems
Gu Shu-Long (顾书龙), Zhang Hong-Bin (张宏彬). Chin. Phys. B, 2004, 13(7): 979-983.
[7] Scheme for directly measuring the Wigner characteristic function via the driven Jaynes-Cummings model
Zheng Shi-Biao (郑仕标). Chin. Phys. B, 2004, 13(2): 187-189.
No Suggested Reading articles found!