Please wait a minute...
Chin. Phys. B, 2024, Vol. 33(1): 016801    DOI: 10.1088/1674-1056/acdc0b
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Effects of Mg-doping temperature on the structural and electrical properties of nonpolar a-plane p-type GaN films

Kai Chen(陈凯)1, Jianguo Zhao(赵见国)1,2,†, Yu Ding(丁宇)1, Wenxiao Hu(胡文晓)1, Bin Liu(刘斌)1,‡, Tao Tao(陶涛)1, Zhe Zhuang(庄喆)1, Yu Yan(严羽)1, Zili Xie(谢自力)1, Jianhua Chang(常建华)2,§, Rong Zhang(张荣)1,3, and Youliao Zheng(郑有炓)1
1 Key Laboratory of Advanced Photonic and Electronic Materials, School of Electronic Science and Engineering, Nanjing University, Nanjing 210023, China;
2 School of Electronics and Information Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China;
3 Xiamen University, Xiamen 361005, China
Abstract  Nonpolar (11—20) a-plane p-type GaN films were successfully grown on r-plane sapphire substrate with the metal—organic chemical vapor deposition (MOCVD) system. The effects of Mg-doping temperature on the structural and electrical properties of nonpolar p-type GaN films were investigated in detail. It is found that all the surface morphology, crystalline quality, strains, and electrical properties of nonpolar a-plane p-type GaN films are interconnected, and are closely related to the Mg-doping temperature. This means that a proper performance of nonpolar p-type GaN can be expected by optimizing the Mg-doping temperature. In fact, a hole concentration of 1.3×1018 cm-3, a high Mg activation efficiency of 6.5%, an activation energy of 114 meV for Mg acceptor, and a low anisotropy of 8.3% in crystalline quality were achieved with a growth temperature of 990 ℃. This approach to optimizing the Mg-doping temperature of the nonpolar a-plane p-type GaN film provides an effective way to fabricate high-efficiency optoelectronic devices in the future.
Keywords:  nonpolar a-plane GaN film      Mg-doping temperature      strains      activation efficiency  
Received:  15 March 2023      Revised:  22 May 2023      Accepted manuscript online:  07 June 2023
PACS:  68.35.bg (Semiconductors)  
  61.05.C- (X-ray diffraction and scattering)  
  74.25.nd (Raman and optical spectroscopy)  
  68.37.Ps (Atomic force microscopy (AFM))  
Fund: Project supported by the National Key Research and Development Program of China (Grant Nos. 2021YFB3601000 and 2021YFB3601002), the National Natural Science Foundation of China (Grant Nos. 62074077, 61921005, 61974062, 62204121, and 61904082), Leading-edge Technology Program of Jiangsu Natural Science Foundation (Grant No. BE2021008-2), and the China Postdoctoral Science Foundation (Grant No. 2020M671441).
Corresponding Authors:  Jianguo Zhao, Bin Liu, Jianhua Chang     E-mail:  zhaojg@nuist.edu.cn;bliu@nju.edu.cn;jianhuachang@nuist.edu.cn

Cite this article: 

Kai Chen(陈凯), Jianguo Zhao(赵见国), Yu Ding(丁宇), Wenxiao Hu(胡文晓), Bin Liu(刘斌), Tao Tao(陶涛), Zhe Zhuang(庄喆), Yu Yan(严羽), Zili Xie(谢自力), Jianhua Chang(常建华), Rong Zhang(张荣), and Youliao Zheng(郑有炓) Effects of Mg-doping temperature on the structural and electrical properties of nonpolar a-plane p-type GaN films 2024 Chin. Phys. B 33 016801

[1] Yadlapalli R T, Kotapati A, Kandipati R, Balusu S R and Koritala C S 2021 Int. J. Energy Res. 45 12638
[2] Huang C Y, Wang J Y, Zhang B, Fu Z, Liu F, Wang M J, Li M J, Wang X, Wang C and He J Y 2022 Chin. Phys. B 31 97401
[3] He Y L, Zhang F, Liu K, Hong Y H, Zheng X F, Wang C, Ma X H and Hao Y 2022 Chin. Phys. B 31 068501
[4] Zhang Y, Zubair A, Liu Z, Xiao M, Perozek J, Ma Y and Palacios T 2021 Semicond. Sci. Tech. 36 054001
[5] Xu P and Zhou Z 2022 Adv. Photonics 4 044001
[6] Liu B, Chen D, Lu H, Tao T, Zhuang Z, Shao Z, Xu W, Ge H, Zhi T, Ren F, Ye J, Xie Z and Zhang R 2020 Adv. Mater. 32 1904354
[7] Wang Y Z, Wang M S, Hua N, Chen K, He Z M, Zheng X F, Li P X, Ma X H, Guo L X and Hao Y 2022 Chin. Phys. B 31 068101
[8] Hang S, Chuang C M, Zhang Y, Chu C, Tian K, Zheng Q, Wu T, Liu Z, Zhang Z H and Li Q 2021 J. Phys. D:Appl. Phys. 54 153002
[9] Die J, Wang C, Yan S, Hu X, Hu W, Ma Z, Deng Z, Du C, Wang L, Jia H, Wang W, Jiang Y and Chen H 2019 Superlattices Microstruct. 130 215
[10] Jiang B, Zhu S, Ren L, Shi L and Zhang X 2022 Adv. Photonics 4 046003
[11] Zhao J, Zhang X, Dai Q, Wang N, Wu Z, Wang S and Cui Y 2017 Appl. Phys. Express 10 011002
[12] Zhang S, Zhang J, Gao J, Wang X, Zheng C, Zhang M, Wu X, Xu L, Ding J, Quan Z and Jiang F 2020 Photonics Res. 8 1671
[13] Iida D, Zhuang Z, Kirilenko P, Velazquez Rizo M and Ohkawa K 2020 Appl. Phys. Express 13 031001
[14] Yao W, Wang L, Meng Y, Yang S, Liu X, Niu H and Wang Z 2021 Crystengcomm 23 2360
[15] Wang L, Wang L, Chen C J, Chen K C, Hao Z, Luo Y, Sun C, Wu M C, Yu J, Han Y, Xiong B, Wang J and Li H 2021 Laser Photonics Rev. 15 2000406
[16] Waltereit P, Brandt O, Trampert A, Grahn H, Menniger J, Ramsteiner M, Reiche M and Ploog K 2000 Nature 406 865
[17] Zhao J, Zhang X, He J, Chen S, Wu Z, Fan A, Dai Q, Feng Z C and Cui Y 2018 ACS Photonics 5 1903
[18] Monavarian M, Rashidi A and Feezell D 2019 Phys. Status Solidi A 216 1800628
[19] Wang Q, Yuan G, Liu W, Zhao S, Liu Z, Chen Y, Wang J and Li J 2019 J. Mater. Sci. 54 7780
[20] Li H, Khoury M, Bonef B, Alhassan A I, Mughal A J, Azimah E, Samsudin M E A, De Mierry P, Nakamura S, Speck J S and DenBaars S P 2017 ACS Appl. Mater. Interfaces 9 36417
[21] Li H, Li P, Zhang H, Chow Y C, Wong M S, Pinna S, Klamkin J, Speck J S, Nakamura S and DenBaars S P 2020 Opt. Express 28 13569
[22] Chen S W H, Huang Y M, Chang Y H, Lin Y, Liou F J, Hsu Y C, Song J, Choi J, Chow C W, Lin C C, Horng R H, Chen Z, Han J, Wu T and Kuo H C 2020 ACS Photonics 7 2228
[23] Haggar J I, Cai Y, Ghataora S S, Smith R M, Bai J and Wang T 2020 ACS Appl. Electron. Mater. 2 2363
[24] Sun Q, Yerino C D, Ko T S, Cho Y S, Lee I H, Han J and Coltrin M E 2008 J. Appl. Phys. 104 093523
[25] Banal R G, Taniyasu Y and Yamamoto H 2014 Appl. Phys. Lett. 105 053104
[26] Huang L, Li L, Shang Z, Wang M, Kang J, Luo W, Liang Z, Prucnal S, Kentsch U and Ji Y 2021 Chin. Phys. B 30 056104
[27] Senichev A, Dzuba B, Nguyen T, Cao Y, Capano M A, Manfra M J and Malis O 2019 APL Mater. 7 121109
[28] Jiang T, Xu S R, Zhang J C, Xie Y and Hao Y 2016 Sci. Rep. 6 19955
[29] Zhao J, Chen K, Gong M, Hu W, Liu B, Tao T, Yan Y, Xie Z, Li Y, Chang J, Wang X, Cui Q, Xu C, Zhang R and Zheng Y 2022 Chin. Phys. Lett. 39 048101
[30] Tsuchiya Y, Okadome Y, Honshio A, Miyake Y, Kawashima T, Iwaya M, Kamiyama S, Amano H and Akasaki I 2005 Jpn. J. Appl. Phys. 44 L1516
[31] Fan A, Zhang X, Wu Z, Zhao J, Chen S, Chen H, Nasir A and Cui Y 2019 Superlattices Microstruct. 130 396
[32] Lee S N, Paek H S, Son J K, Sakong T, Nam O H and Park Y 2007 J. Cryst. Growth 307 358
[33] Azman A, Kamarundzaman A, Abu Bakar A S and Abd Majid W H 2021 Mater. Sci. Semicond. Process. 131 105836
[34] Wu Z, Zhang X, Dai Q, Zhao J, Fan A, Wang S and Cui Y 2017 Superlattices Microstruct. 109 880
[35] Wu G M and Hsieh T H 2007 J. Achiev. Mater. Manuf. Eng. 24 193
[36] Zhao J, Zhang X, Wu Z, Dai Q, Wang N, He J, Chen S, Feng Z C and Cui Y 2017 J. Alloys Compd. 729 992
[37] Seo Y G, Shin S H, Kim D S, Yoon H D, Hwang S M and Baik K H 2015 J. Nanosci. Nanotechnol. 15 7787
[38] Fudetani T, Ueno K, Kobayashi A and Fujioka H 2019 Appl. Phys. Lett. 114 032102
[39] Vaudo R P, Xu X, Salant A, Malcarne J and Brandes G R 2003 Phys. Status Solidi A 200 18
[40] McLaurin M, Mates T E, Wu F and Speck J S 2006 J. Appl. Phys. 100 063707
[41] Narita T, Yoshida H, Tomita K, Kataoka K, Sakurai H, Horita M, Bockowski M, Ikarashi N, Suda J, Kachi T and Tokuda Y 2020 J. Appl. Phys. 128 090901
[1] Corrigendum to “Reactive oxygen species in plasma against E. coli cells survival rate”
Renwu Zhou(周仁武), Xianhui Zhang(张先徽), Zichao Zong(宗子超), Junxiong Li(李俊雄), Zhoubin Yang(杨周斌), Dongping Liu(刘东平), and Size Yang(杨思泽). Chin. Phys. B, 2023, 32(10): 109901.
[2] Reactive oxygen species in plasma against E. coli cells survival rate
Zhou Ren-Wu (周仁武), Zhang Xian-Hui (张先徽), Zong Zi-Chao (宗子超), Li Jun-Xiong (李俊雄), Yang Zhou-Bin (杨周斌), Liu Dong-Ping (刘东平), Yang Si-Ze (杨思泽). Chin. Phys. B, 2015, 24(8): 085201.
No Suggested Reading articles found!