Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(12): 127301    DOI: 10.1088/1674-1056/acc7fa
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Modulated optical and ferroelectric properties in a lateral structured ferroelectric/semiconductor van der Waals heterojunction

Shanshan Chen(陈珊珊)1, Xinhao Zhang(张新昊)1, Guangcan Wang(王广灿)1, Shuo Chen(陈朔)1, Heqi Ma(马和奇)1, Tianyu Sun(孙天瑜)1, Baoyuan Man(满宝元)1,2,‡, and Cheng Yang(杨诚)1,2,3,†
1 School of Physics and Electronics, Shandong Normal University, Jinan 250014, China;
2 Institute of Materials and Clean Energy, Shandong Normal University, Jinan 250014, China;
3 Shandong Provincial Engineering and Technical Center of Light Manipulations, Shandong Normal University, Jinan 250014, China
Abstract  Modulation between optical and ferroelectric properties was realized in a lateral structured ferroelectric CuInP2S6 (CIPS)/semiconductor MoS2 van der Waals heterojunction. The ferroelectric hysteresis loop area was modulated by the optical field. Two types of photodetection properties can be realized in a device by changing the ON and OFF states of the ferroelectric layer. The device was used as a photodetector in the OFF state but not in the ON state. The higher tunnelling electroresistance (~1.4×104) in a lateral structured ferroelectric tunnelling junction was crucial, and it was analyzed and modulated by the barrier height and width of the ferroelectric CIPS/semiconductor MoS2 Schottky junction. The new parameter of the ferroelectric hysteresis loop area as a function of light intensity was introduced to analyze the relationship between the ferroelectric and photodetection properties. The proposed device has potential application as an optoelectronic sensory cell in the biological nervous system or as a new type of photodetector.
Keywords:  ferroelectric tunnelling junction      metal/ferroelectric/semiconductor      tunnelling electroresistance      optoelectronic properties  
Received:  16 December 2022      Revised:  20 March 2023      Accepted manuscript online:  28 March 2023
PACS:  73.40.Qv (Metal-insulator-semiconductor structures (including semiconductor-to-insulator))  
  73.43.Jn (Tunneling)  
  85.50.Gk (Non-volatile ferroelectric memories)  
  85.60.-q (Optoelectronic devices)  
Fund: Project supported by the National Natural Science Foundation of China(Grant Nos.11874244 and 11974222).
Corresponding Authors:  Baoyuan Man, Cheng Yang     E-mail:  byman@sdnu.edu.cn;chengyang@sdnu.edu.cn

Cite this article: 

Shanshan Chen(陈珊珊), Xinhao Zhang(张新昊), Guangcan Wang(王广灿), Shuo Chen(陈朔), Heqi Ma(马和奇), Tianyu Sun(孙天瑜), Baoyuan Man(满宝元), and Cheng Yang(杨诚) Modulated optical and ferroelectric properties in a lateral structured ferroelectric/semiconductor van der Waals heterojunction 2023 Chin. Phys. B 32 127301

[1] Kumar S, Wang X, Strachan J P, Yang Y and Lu W D 2022 Nat. Rev. Mater. 7 575
[2] Kang J, Kim T, Hu S, Kim J, Kwak J Y, Park J, Park J K, Kim I, Lee S, Kim S and Jeong Y 2022 Nat. Commun. 13 4040
[3] Sarwat S G, Moraiti T, Wright C D and Bhaskaran H 2022 Nat. Commun. 13 2247
[4] Zahedinejad M, Fulara H, Khymyn R, Houshang A, Dvornik M, Fukami S, Kanai S, Ohno H and Akerman J 2022 Nat. Mater. 21 81
[5] John R A, Demirag Y, Shynkarenko Y, Berezovska Y, Ohannessian N, Payvand M, Zeng P, Bodnarchuk M I, Krumeich F, Kara G, Shorubalko I, Nair M V, Cooke G A, Lippert T, Indiveri G and Kovalenko M V 2022 Nat. Commun. 13 2074
[6] Zhang X, Zhuo Y, Luo Q, Wu Z, Midya R, Wang Z, Song W, Wang R, Upadhyay N K, Fang Y, Kiani F, Rao M, Yang Y, Xia Q, Liu Q, Liu M and Yang J J 2020 Nat. Commun. 11 51
[7] Wang W, Gao S, Li Y, Yue W, Kan H, Zhang C, Lou Z, Wang L and Shen G 2021 Adv. Funct. Mater. 31 2101201
[8] Kim Y, Hyeong S K, Choi Y, Lee S K, Lee J H and Yu H K 2021 ACS Appl. Mater. Interfaces 13 61413
[9] Gao S, Liu G, Yang H, Hu C, Chen Q, Gong G, Xue W, Yi X, Shang J and Li R W 2019 ACS Nano 13 2634
[10] Wang J, Lv Z, Xing X, Li X, Wang Y, Chen M, Pang G, Qian F, Zhou Y and Han S T 2020 Adv. Funct. Mater. 30 2070105
[11] Liu F, You L, Seyler K L, Li X, Yu P, Lin J, Wang X, Zhou J, Wang H, He H, Pantelides S T, Zhou W, Sharma P, Xu X, Ajayan P M, Wang J and Liu Z 2016 Nat. Commun. 7 12357
[12] Wu J, Chen H-Y, Yang N, Cao J, Yan X, Liu F, Sun Q, Ling X, Guo J and Wang H 2020 Nat. Electron. 3 466
[13] Chen L, Pam M E, Li S and Ang K W 2022 Neuromorph. Comput. Eng. 2 022001
[14] Li T, Lipatov A, Lu H, Lee H, Lee J W, Torun E, Wirtz L, Eom C B, Iniguez J, Sinitskii A and Gruverman A 2018 Nat. Commun. 9 3344
[15] Wei Z, Wang Q Q, Guo Y T, Li J W, Shi D X and Zhang G Y 2018 Acta Phys. Sin. 67 128103 (in Chinese)
[16] Guo L, Gu Y, Yang Z, Tian S, San X, Liu J, Gao L, Qiao S and Wang S 2021 Adv. Mater. Interfaces 8 2002231
[17] Zeng P, Wang W, Han D, Zhang J, Yu Z, He J, Zheng P, Zheng H, Zheng L, Su W, Huo D, Ni Z, Zhang Y and Wu Z 2022 ACS Nano 16 9329
[18] Pan X, Jin T, Gao J, Han C, Shi Y and Chen W 2020 Small 16 2001504
[19] Ma C, Luo Z, Huang W, Zhao L, Chen Q, Lin Y, Liu X, Chen Z, Liu C, Sun H, Jin X, Yin Y and Li X 2020 Nat. Commun. 11 1439
[20] Xi Z, Ruan J, Li C, Zheng C, Wen Z, Dai J, Li A and Wu D 2017 Nat. Commun. 8 15217
[21] Jin Hu W, Wang Z, Yu W and Wu T 2016 Nat. Commun. 7 10808
[22] Chaudhary P, Buragohain P, Kozodaev M, Zarubin S, Mikheev V, Chouprik A, Lipatov A, Sinitskii A, Zenkevich A and Gruverman A 2021 Appl. Phys. Lett. 118 083106
[23] Zhang W, Gao H, Deng C, Lv T, Hu S, Wu H, Xue S, Tao Y, Deng L and Xiong W 2021 Nanoscale 13 11497
[24] Pantel DAlexe M 2010 Phys. Rev. B 82 134105
[25] Ochedowski O, Marinov K, Scheuschner N, Poloczek A, Bussmann B K, Maultzsch J and Schleberger M 2014 Beilstein J. Nanotechnol. 5 291
[26] Liu X, Hu S, Lin Z, Li X, Song L, Yu W, Wang Q and He W 2021 ACS Appl. Mater. Interfaces 13 15820
[27] Zhuravlev M Y, Sabirianov R F, Jaswal S S and Tsymbal E Y 2005 Phys. Rev. Lett. 94 246802
[28] Kohlstedt H, Pertsev N A, Contreras J R and Waser R 2005 Phys. Rev. B 72 125341
[29] Wen Z, Li C, Wu D, Li A and Ming N 2013 Nat. Mater. 12 617
[30] Kong L, Zhang X, Tao Q, Zhang M, Dang W, Li Z, Feng L, Liao L, Duan X and Liu Y 2020 Nat. Commun. 11 1866
[31] Jiang A Q, Wang C, Jin K J, Liu X B, Scott J F, Hwang C S, Tang T A, Lu H B and Yang G Z 2011 Adv. Mater. 23 1277
[32] Gruverman A, Wu D, Lu H, Wang Y, Jang H W, Folkman C M, Zhuravlev M Y, Felker D, Rzchowski M, Eom C B and Tsymbal E Y 2009 Nano Lett. 9 3539
[33] Ambriz-Vargas F, Kolhatkar G, Broyer M, Hadj-Youssef A, Nouar R, Sarkissian A, Thomas R, Gomez-Yanez C, Gauthier M A and Ruediger A 2017 ACS Appl. Mater. Interfaces 9 13262
[34] Zhang X, Liu B, Gao L, Yu H, Liu X, Du J, Xiao J, Liu Y, Gu L, Liao Q, Kang Z, Zhang Z and Zhang Y 2021 Nat. Commun. 12 1522
[35] Chen A, Zhang W, Dedon L R, Chen D, Khatkhatay F, MacManus-Driscoll J L, Wang H, Yarotski D, Chen J, Gao X, Martin L W, Roelofs A and Jia Q 2020 Adv. Funct. Mater. 30 2000664
[36] Li S, Li B, Feng X, Chen L, Li Y, Huang L, Fong X and Ang K W 2021 Npj 2D Mater. Appl. 5 1
[37] Li D, Wu B, Zhu X, Wang J, Ryu B, Lu W D, Lu W and Liang X 2018 ACS Nano 12 9240
[38] Singh P, Baek S, Yoo H H, Niu J, Park J H and Lee S 2022 ACS Nano 16 5418
[39] Hou P, Chen C, Li B, Zheng S, Wang J, Zhong X and Liao M 2021 Adv. Funct. Mater. 31 2011029
[40] Xue F, Chen L, Chen J, Liu J, Wang L, Chen M, Pang Y, Yang X, Gao G, Zhai J and Wang Z L 2016 Adv. Mater. 28 3391
[41] Liu B, Chen L, Liu G, Abbas A N, Fathi M and Zhou C 2014 ACS Nano 8 5304
[42] Chen L, Xue F, Li X, Huang X, Wang L, Kou J and Wang Z L 2016 ACS Nano 10 1546
[43] Zheng W, Xu Y, Zheng L, Yang C, Pinna N, Liu X and Zhang J 2020 Adv. Funct. Mater. 30 2000435
[44] Zheng Q W, Cui J W, Zhou H, Yu D Z, Yu X F and Guo Q 2016 Chin. Phys. Lett. 33 076102
[45] Tang Z J, Li R and Zhang X W 2020 Chin. Phys. B 29 047701
[46] Sangwan V K, Lee H S, Bergeron H, Balla I, Beck M E, Chen K S and Hersam M C 2018 Nature 554 500
[47] Liu F, Ji F, Lin Y, Huang S, Lin X and Yang F 2020 ACS Appl. Nano Mater. 3 8888
[48] Jiao P, Xi Z, Zhang X, Han Y, Wu Y and Wu D 2021 Appl. Phys. Lett. 118 252901
[49] Chen J, Zhu C, Cao G, Liu H, Bian R, Wang J, Li C, Chen J, Fu Q, Liu Q, Meng P, Li W, Liu F and Liu Z 2022 Adv. Mater. 34 2104676
[50] Wang D, Wang P, Mondal S, Mohanty S, Ma T, Ahmadi E and Mi Z 2022 Adv. Electron. Mater. 8 2200005
[51] Li C, Huang L, Li T, Lu W, Qiu X, Huang Z, Liu Z, Zeng S, Guo R, Zhao Y, Zeng K, Coey M, Chen J, Ariando and Venkatesan T 2015 Nano Lett. 15 2568
[52] Wang Z, Zheng D, Li D, Jin C and Bai H 2019 Thin Solid Films 671 59
[53] Yan X, Qin C, Lu C, Zhao J, Zhao R, Ren D, Zhou Z, Wang H, Wang J, Zhang L, Li X, Pei Y, Wang G, Zhao Q, Wang K, Xiao Z and Li H 2019 ACS Appl. Mater. Interfaces 11 48029
[54] Yamada H, Garcia V, Fusil S, Boyn S, Marinova M, Gloter A, Xavier S, Grollier J, Jacquet E, Carretero C, Deranlot C, Bibes M and Barthelemy A 2013 ACS Nano 7 5385
[55] Zhang Z C, Wang F, Wu S J, Li Y, Mi W, Zhao J S and Zhang K L 2018 Acta Phys. Sin. 67 057301 (in Chinese)
[56] Garcia V and Bibes M 2014 Nat. Commun. 5 4289
[57] Wang L, Wang X, Zhang Y, Li R, Ma T, Leng K, Chen Z, Abdelwahab I and Loh K P 2020 Adv. Funct. Mater. 30 2004609
[58] Kolhatkar G, Ambriz-Vargas F, Huber B, Thomas R and Ruediger A 2018 Cryst. Growth Des. 18 1864
[59] Hao J L, Bai Y, Liu X Y, Li C Z, Tang Y D, Chen H, Tian X L, Lu J and Wang S K 2020 Chin. Phys. B 29 097301
[60] Liu Y, Cao Y, Zhu H, Ji L, Chen L, Sun Q and Zhang D W 2021 IEEE Electron Device Lett. 42 1311
[61] Huang Z, Zhang T, Liu J, Zhang L, Jin Y, Wang J, Jiang K, Fan S and Li Q 2019 ACS Appl. Electron. Mater. 1 1314
[62] Xie Y, Zhang B, Wang S, Wang D, Wang A, Wang Z, Yu H, Zhang H, Chen Y, Zhao M, Huang B, Mei L and Wang J 2017 Adv. Mater. 29 1605972
[1] Achieving high-performance multilayer MoSe2 photodetectors by defect engineering
Jintao Hong(洪锦涛), Fengyuan Zhang(张丰源), Zheng Liu(刘峥), Jie Jiang(蒋杰), Zhangting Wu(吴章婷), Peng Zheng(郑鹏), Hui Zheng(郑辉), Liang Zheng(郑梁), Dexuan Huo(霍德璇), Zhenhua Ni(倪振华), and Yang Zhang(张阳). Chin. Phys. B, 2021, 30(8): 087801.
[2] Theoretical investigation of halide perovskites for solar cell and optoelectronic applications
Jingxiu Yang(杨竞秀), Peng Zhang(张鹏), Jianping Wang(王建平), and Su-Huai Wei(魏苏淮)†. Chin. Phys. B, 2020, 29(10): 108401.
[3] Pressure-induced enhancement of optoelectronic properties in PtS2
Yi-Fang Yuan(袁亦方), Zhi-Tao Zhang(张志涛), Wei-Ke Wang(王伟科), Yong-Hui Zhou(周永惠), Xu-Liang Chen(陈绪亮), Chao An(安超), Ran-Ran Zhang(张冉冉), Ying Zhou(周颖), Chuan-Chuan Gu(顾川川), Liang Li(李亮), Xin-Jian Li(李新建), Zhao-Rong Yang(杨昭荣). Chin. Phys. B, 2018, 27(6): 066201.
[4] Investigation of optoelectronic properties of pure and Co substituted α-Al2O3 by Hubbard and modified Becke-Johnson exchange potentials
H. A. Rahnamaye Aliabad. Chin. Phys. B, 2015, 24(9): 097102.
No Suggested Reading articles found!