Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(11): 114704    DOI: 10.1088/1674-1056/acea6d
Special Issue: SPECIAL TOPIC — Celebrating the 100th Anniversary of Physics Discipline of Northwest University
SPECIAL TOPIC—Celebrating the 100th Anniversary of Physics Discipline of Northwest University Prev   Next  

Bacterial turbulence in gradient confinement

Ningzhe Yan(颜宁哲), Chenliang Xie(谢晨亮), Hao Luo(罗昊), Yanan Liu(刘亚楠), and Guangyin Jing(经光银)
School of Physics, Northwest University, Xi'an 710127, China
Abstract  We investigate a novel form of non-uniform living turbulence at an extremely low Reynolds number using a bacterial suspension confined within a sessile droplet. This turbulence differs from homogeneous active turbulences in two or three-dimensional geometries. The heterogeneity arises from a gradient of bacterial activity due to oxygen depletion along the droplet's radial direction. Motile bacteria inject energy at individual scales, resulting in local anisotropic energy fluctuations that collectively give rise to isotropic turbulence. We find that the total kinetic energy and enstrophy decrease as distance from the drop contact line increases, due to the weakening of bacterial activity caused by oxygen depletion. While the balance between kinetic energy and enstrophy establishes a characteristic vortex scale depending on the contact angle of the sessile drop. The energy spectrum exhibits diverse scaling behaviors at large wavenumber, ranging from k-1/5 to k-1, depending on the geometric confinement. Our findings demonstrate how spatial regulation of turbulence can be achieved by tuning the activity of driving units, offering insights into the dynamic behavior of living systems and the potential for controlling turbulence through gradient confinements.
Keywords:  collective motion      bacterial turbulence      bacterial drop      gradient confinement  
Received:  09 June 2023      Revised:  12 July 2023      Accepted manuscript online:  26 July 2023
PACS:  47.61.-k (Micro- and nano- scale flow phenomena)  
  47.63.-b (Biological fluid dynamics)  
  47.63.Gd (Swimming microorganisms)  
  47.90.+a (Other topics in fluid dynamics)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 12174306 and 12004308) and the Natural Science Basic Research Program of Shaanxi (Grant No. 2023-JC-JQ-02). The authors also thank D. Saintillan, A. Lindner, and X. Shi for useful discussions and contributive suggestions.
Corresponding Authors:  Yanan Liu, Guangyin Jing     E-mail:  yanan.liu@nwu.edu.cn;jing@nwu.edu.cn

Cite this article: 

Ningzhe Yan(颜宁哲), Chenliang Xie(谢晨亮), Hao Luo(罗昊), Yanan Liu(刘亚楠), and Guangyin Jing(经光银) Bacterial turbulence in gradient confinement 2023 Chin. Phys. B 32 114704

[1] Alert R, Casademunt J and Joanny J F 2021 Annu. Rev. Condens. Matter Phys. 13 1
[2] Ishikawa T, Yoshida N, Ueno H, Wiedeman M, Imai Y and Yamaguchi T 2011 Phys. Rev. Lett. 107 028102
[3] Wensink H H, Dunkel J, Heidenreich S, Drescher K, Goldstein R E, Löwen H and Yeomans J M 2012 Proc. Natl. Acad. Sci. USA 109 14308
[4] Bratanov V, Jenko F and Frey E 2015 Proc. Natl. Acad. Sci. USA 112 15048
[5] Alert R, Joanny J F and Casademunt J 2020 Nat. Phys. 16 682
[6] Dombrowski C, Cisneros L, Chatkaew S, Goldstein R E and Kessler J O 2004 Phys. Rev. Lett. 93 098103
[7] Sokolov A, Aranson I S, Kessler J O and Goldstein R E 2007 Phys. Rev. Lett. 98 158102
[8] Wolgemuth C W 2008 Biophys. J. 95 1564
[9] Dunkel J, Heidenreich S, Drescher K, Wensink H H, Bär M and Goldstein R E 2013 Phys. Rev. Lett. 110 228102
[10] Wu X L and Libchaber A 2000 Phys. Rev. Lett. 84 3017
[11] Kunze E, Dower J, Dewey R and D'asaro E 2007 Science 318 1239
[12] Kurtuldu H, Guasto J S, Johnson K A and Gollub J P 2011 Proc. Natl. Acad. Sci. USA 108 10391
[13] Zaid I M, Dunkel J and Yeomans J M 2011 J. Royal Soc. Interface 8 1314
[14] Taylor J R and Stocker R 2012 Science 338 675
[15] Houghton I A, Koseff J R, Monismith S G and Dabiri J O 2018 Nature 556 497
[16] Mukherjee S, Singh R K, James M and Ray S S 2021 Phys. Rev. Lett. 127 118001
[17] Linkmann M, Boffetta G, Marchetti M C and Eckhardt B 2019 Phys. Rev. Lett. 122 214503
[18] Martínez-Prat B, Ignés-Mullol J, Casademunt J and Sagués F 2019 Nat. Phys. 15 362
[19] Li H, Shi X Q, Huang M, Chen X, Xiao M, Liu C, Chaté H and Zhang H 2019 Proc. Natl. Acad. Sci. USA 116 777
[20] Liu Z, Zeng W, Ma X and Cheng X 2021 Soft Matter
[21] Vicsek T and Zafeiris A 2012 Phys. Rep. 517 71
[22] Vicsek T, Czirók A, Ben-Jacob E, Cohen I and Shochet O 1995 Phys. Rev. Lett. 75 1226
[23] Chaté H, Ginelli F, Grégoire G, Peruani F and Raynaud F 2008 Eur. Phys. J. B 64 451
[24] Martínez-Prat B, Alert R, Meng F, Ignés-Mullol J, Joanny J F, Casademunt J, Golestanian R and Sagués F 2021 Phys. Rev. X 11 031065
[25] Mukherjee S, Singh R K, James M and Ray S S 2021 Phys. Rev. Lett. 127 118001
[26] Bárdfalvy D, Nordanger H, Nardini C, Morozov A and Stenhammar J 2019 Soft Matter 15 7747
[27] Čopar S, Aplinc J, Kos Ž, Žumer S and Ravnik M 2019 Phys. Rev. X 9 031051
[28] Krajnik Ž, Kos Ž and Ravnik M 2020 Soft Matter 16 9059
[29] Shendruk T N, Thijssen K, Yeomans J M and Doostmohammadi A 2018 Phys. Rev. E 98 010601
[30] Varghese M, Baskaran A, Hagan M F and Baskaran A 2020 Phys. Rev. Lett. 125 268003
[31] Guillamat P, Ignés-Mullol J and Sagués F 2017 Nat. Commun. 8 564
[32] Lin S Z, Zhang W Y, Bi D, Li B and Feng X Q 2021 Commun. Phys. 4 21
[33] Gagnon D A, Ran R and Arratia P E 2021 arXiv:2111.00068
[34] Thielicke W and Stamhuis E 2014 J. Open Res. Softw. 2 e30
[35] Tuval I, Cisneros L, Dombrowski C, Wolgemuth C W, Kessler J O and Goldstein R E 2005 Proc. Natl. Acad. Sci. USA 102 2277
[36] Douarche C, Buguin A, Salman H and Libchaber A 2009 Phys. Rev. Lett. 102 198101
[37] Tejera F, Libchaber A and Petroff A P 2018 Phys. Rev. E 98 042409
[38] Kolmogorov A N 1941 Cr. Acad. Sci. URSS 30 301
[39] Van Atta C 1991 Proc. Math. Phys. Eng. Sci. 434 139
[40] Pope S B 2000 Turbulent Flows (Cambridge:Cambridge University Press)
[41] Saintillan D and Shelley M J 2008 Phys. Rev. Lett. 100 178103
[42] Saintillan D and Shelley M J 2015 Complex Fluids in Biological Systems (Berlin:Springer) pp. 319-355
[43] Hohenegger C and Shelley M J 2010 Phys. Rev. E 81 046311
[1] Graph dynamical networks for forecasting collective behavior of active matter
Yanjun Liu(刘彦君), Rui Wang(王瑞), Cai Zhao(赵偲), and Wen Zheng(郑文). Chin. Phys. B, 2022, 31(11): 116401.
[2] Molecular dynamics simulations on the dynamics of two-dimensional rounded squares
Zhang-lin Hou(侯章林), Ying Ju(句颖), Yi-wu Zong(宗奕吾), Fang-fu Ye(叶方富), Kun Zhao(赵坤). Chin. Phys. B, 2018, 27(8): 088203.
[3] Flowrate behavior and clustering of self-driven robots in a channel
Bo Tian(田波), Wang-Ping Sun(孙王平), Ming Li(李明), Rui Jiang(姜锐), Mao-Bin Hu(胡茂彬). Chin. Phys. B, 2018, 27(3): 038902.
No Suggested Reading articles found!