Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(11): 118105    DOI: 10.1088/1674-1056/ac05b5
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

High adsorption and separation performance ofCO2 over N2 in azo-based (N=N) pillar[6]arene supramolecular organic frameworks

Yong-Chao Jiang(姜永超)1, Gui-Xia Li(李桂霞)1, Gui-Feng Yu(于桂凤)1, Juan Wang(王娟)1, Shu-Lai Huang(黄树来)1, and Guo-Liang Xu(徐国亮)2,†
1 College of Science and Information, Qingdao Agricultural University, Qingdao 266109, China;
2 School of Physics, Henan Normal University, Xinxiang 453007, China
Abstract  Azo-based pillar[6]arene supramolecular organic frameworks are reported for CO2 and N2 adsorption and separation by density functional theory and grand canonical Monte-Carlo simulation. Azo-based pillar[6]arene provides suitable environment for CO2 adsorption and selectivity. The adsorption and selectivity results show that introducing azo groups can effectively improve CO2 adsorption and selectivity over N2, and both CO2 adsorption and CO2 selectivity over N2 follow the sequence pillar[6]arene_N4 > pillar[6]arene_N2 > pillar[6]arene. Pillar[6]arene_N4 exhibits CO2 adsorption capacity of ~ 1.36 mmol/g, and superior selectivity of CO2 over N2 of ~ 116.75 with equal molar fraction at 1 bar (1 bar=105 Pa) and 298 K. Interaction analysis confirms that both the Coulomb and van der Waals interactions between CO2 with pillar[6]arene frameworks are greater than that of N2. The stronger affinity of CO2 with pillar[6]arene_N4 than other structures and the larger isosteric heat differences between CO2 and N2 rendered pillar[6]arene_N4 to present the high CO2 adsorption capacity and high CO2 selectivity over N2. Our results highlight the potential of azo-functionalization as an excellent means to improve pillar[6]arene for CO2 capture and separation.
Keywords:  supramolecular organic framework      functionalization      modelling and simulation      carbon capture and storage  
Received:  27 February 2021      Revised:  13 May 2021      Accepted manuscript online:  27 May 2021
PACS:  81.05.Rm (Porous materials; granular materials)  
  68.43.-h (Chemisorption/physisorption: adsorbates on surfaces)  
  31.15.E (Density-functional theory)  
  05.10.Ln (Monte Carlo methods)  
Fund: Project supported by Shandong Province Higher Education Science and Technology Program, China (Grant No. J17KA016), State Key Laboratory of Bio-Fibers and Eco-Textiles (Grant No. K2019-12), and the Cultivation Fund of Henan Normal University, China (Grant No. 2020PL15).
Corresponding Authors:  Guo-Liang Xu     E-mail:  xugliang@htu.edu.cn

Cite this article: 

Yong-Chao Jiang(姜永超), Gui-Xia Li(李桂霞), Gui-Feng Yu(于桂凤), Juan Wang(王娟), Shu-Lai Huang(黄树来), and Guo-Liang Xu(徐国亮) High adsorption and separation performance ofCO2 over N2 in azo-based (N=N) pillar[6]arene supramolecular organic frameworks 2021 Chin. Phys. B 30 118105

[1] Oschatz M and Antonietti M 2018 Energy Environ. Sci. 11 57
[2] Kupgan G, Abbott L J, Hart K E and Colina C M 2018 Chem. Rev. 118 5488
[3] Lu X Q, Jin D L, Wei S X, Wang Z J, An C H and Guo W Y 2015 J. Mater. Chem. A 3 12118
[4] Patil R S, Banerjee D, Zhang C, Thallapally P K and Atwood J L 2016 Angew. Chem. Int. Ed. 128 4599
[5] Dewal M B, Lufaso M W, Hughes A D, Samuel S A, Pellechia P and Shimizu L S 2006 Chem. Mater. 18 4855
[6] Lim S, Kim H, Selvapalam N, Kim K J, Cho S J, Seo G and Kim K 2008 Angew. Chem. Int. Ed. 120 3400
[7] Li E, Jie K C, Zhou Y J, Zhao R and Huang F H 2018 J. Am. Chem. Soc. 140 15070
[8] Ogoshi T, Saito K, Sueto R, Kojima R, Hamada Y, Akine S, Moeljadi A M P, Hirao H, Kakuta T and Yamagishi T 2018 Angew. Chem. Int. Ed. 57 1592
[9] Ogoshi T, Sueto R, Yoshikoshi K and Yamagishi T 2014 Chem. Commu. 50 15209
[10] Tan L L, Zhu Y L, Long H, Jin Y H, Zhang W and Yang Y W 2017 Chem. Comm. 53 6409
[11] Tan L L, Zhu Y L, Jin Y H, Zhang W and Yang Y W 2018 Supramol. Chem. 30 648
[12] Jursic B S 1998 J Mol Struct: THEOCHEM 452 145
[13] Potoff J J and Siepmann J I 2001 AIChE J. 47 1676
[14] Mayo S L, Olafson B D and Goddard W A 1990 J. Phys. Chem. 94 8897
[15] Li X F, Zhu L, Xue Q Z, Chang X, Ling C C and Xing W 2017 ACS Appl. Mater. Interfaces 9 31161
[16] Wu Z H, Wei S X, Wang M H, Zhou S N, Wang J H, Wang Z J, Guo W Y and Lu X Q 2018 J. CO2 Util. 28 145
[17] Salavati M, Ghasemi H and Rabczuk T 2018 Comput. Mater. Sci. 149 460
[18] Dubbeldam D, Calero S, Ellis D E and Snurr R Q 2016 Mol. Simulat. 42 81
[19] Kumar K V, Preuss K, Lu L H, Guo Z X and Titiricit M M 2015 J. Phys. Chem. C 119 22310
[20] Sarkisov L and Harrison A 2011 Mol. Simulat. 37 1248
[21] Düren T, Millange F, Férey G, Walton K S and Snurr R Q 2007 J. Phys. Chem. C 111 15350
[22] Garshasbi V, Jahangiri M and Anbia M 2017 Appl. Surf. Sci. 393 225
[23] Zhang S Y, Jensen S, Tan K, Wojtas L, Roveto M, Cure J, Thonhauser T, Chabal Y J and Zaworotko M J 2018 J. Am. Chem. Soc. 140 12545
[24] Wu X W, Han X, Liu YH, Liu Y and Cui Y 2018 J. Am. Chem. Soc. 140 16124
[25] Gopalsamy K and Subramanian V 2018 New J. Chem. 42 4240
[26] Thommes M, Kaneko K, Neimark A V, Olivier J P, Rodriguez-Reinoso F, Rouquerol J and Sing K S W 2015 Pure Appl. Chem. 87 1051
[27] Chaix A, Mouchaham G, Shkurenko A, Hoang P, Moosa B, Bhatt P M, Adil K, Salama K N, Eddaoudi M and Khashab N M 2018 J. Am. Chem. Soc. 140 14571
[28] Tan L L, Li H W, Tao Y C, Zhang X A, Wang B and Yang Y W 2014 Adv. Mater. 26 7027
[29] Dai J J, Xie D Y, Liu Y, Zhang Z G, Yang Y W, Yang Q W, Ren Q L and Bao Z B 2020 Ind. Eng. Chem. Res. 59 7866
[30] Zhou S N, Guo C, Wu Z H and Wang M H 2017 Appl. Surf. Sci. 410 259
[31] Chen S J, Fu Y, Huang Y X and Tao Z C 2016 J. Porous. Mat. 23 713
[32] Balbuena P B and Gubbins K E 1993 Langmuir 9 1801
[33] Prasetya N, Donose B C and Ladewig B P 2018 J. Mater. Chem. A 6 16390
[34] Patel H A, Je S H, Park J, Chen D P, Jung Y S, Yavuz C T and Coskun A 2013 Nat. Commun. 4 1357
[35] Hu J B, Liu Y, Liu J, Gu C K and Wu D W 2018 Fuel 226 591
[36] Chokbunpiam T, Fritzsche S, Chmelik C, Caro J, Janke W and Hannongbua S 2016 J. Phys. Chem. C 120 23458
[37] Li J R, Kuppler R J and Zhou H C 2009 Chem. Soc. Rev. 38 1477
[38] Yang X, Rees R J, Conway W, Puxty G and Winkler D A 2017 Chem. Rev. 117 9524
[39] Arab P, Rabbani M, Sekizkardes A K and Islamoglu T 2014 Chem. Mater. 26 1385
[40] Patel H A, Je S H, Park J, Jung Y S, Coskun A and Yzvuz C T 2013 Chem. A Eur. J. 20 772
[41] Liu B, Yao S, Liu X Y, Li X, Krishna R, Li GH, Huo Q S and Liu Y L 2017 ACS Appl. Mater. Interfaces 9 32820
[42] Rahimi M, Singh J K and Müller-Plathe F 2016 Phys. Chem. Chem. Phys. 18 4112
[43] Watabe T and Yogo K 2013 Sep. Purif. Technol. 120 20
[44] Zhu F, Dong S and Cheng G 2011 Chin. Phys. B 20 077103
[1] Evaluating physical changes of iron oxide nanoparticles due to surface modification with oleic acid
S Rosales, N Casillas, A Topete, O Cervantes, G Gonz\'alez, J A Paz, and M E Cano†. Chin. Phys. B, 2020, 29(10): 100502.
[2] Alkyl group functionalization-induced phonon thermal conductivity attenuation in graphene nanoribbons
Caiyun Wang(王彩云), Shuang Lu(鲁爽), Xiaodong Yu(于晓东), Haipeng Li(李海鹏). Chin. Phys. B, 2019, 28(1): 016501.
[3] Quantum spin Hall insulators in chemically functionalized As (110) and Sb (110) films
Xiahong Wang(王夏烘), Ping Li(李平), Zhao Ran(冉召), Weidong Luo(罗卫东). Chin. Phys. B, 2018, 27(8): 087305.
[4] Structural characteristics of surface-functionalized nitrogen-doped diamond-like carbon films and effective adjustment to cell attachment
Liu Ai-Ping (刘爱萍), Liu Min (刘敏), Yu Jian-Can (郁建灿), Qian Guo-Dong (钱国栋), Tang Wei-Hua (唐为华). Chin. Phys. B, 2015, 24(5): 056804.
[5] Surface modification of magnetic nanoparticles in biomedicine
Chu Xin (储鑫), Yu Jing (余靓), Hou Yang-Long (侯仰龙). Chin. Phys. B, 2015, 24(1): 014704.
[6] A molecular dynamics study of the structural change differences between Au225 and Au369 clusters on MgO surfaces at low temperature
Zhang Lin(张林), Wang Shao-Qing(王绍青), and Chen Nan-Xian(陈难先) . Chin. Phys. B, 2012, 21(3): 033601.
No Suggested Reading articles found!