Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(10): 100506    DOI: 10.1088/1674-1056/ac1e13
GENERAL Prev   Next  

Design and multistability analysis of five-value memristor-based chaotic system with hidden attractors

Li-Lian Huang(黄丽莲)1,2, Shuai Liu(刘帅)1,2, Jian-Hong Xiang(项建弘)1,2,†, and Lin-Yu Wang(王霖郁)1,2
1 College of Information and Communication Engineering, Harbin Engineering University, Harbin 150001, China;
2 MIIT Key Laboratory of Advanced Marine Communication and Information Technology, Harbin 150001, China
Abstract  A five-value memristor model is proposed, it is proved that the model has a typical hysteresis loop by analyzing the relationship between voltage and current. Then, based on the classical Liu-Chen system, a new memristor-based four-dimensional (4D) chaotic system is designed by using the five-value memristor. The trajectory phase diagram, Poincare mapping, bifurcation diagram, and Lyapunov exponent spectrum are drawn by numerical simulation. It is found that, in addition to the general chaos characteristics, the system has some special phenomena, such as hidden homogenous multistabilities, hidden heterogeneous multistabilities, and hidden super-multistabilities. Finally, according to the dimensionless equation of the system, the circuit model of the system is built and simulated. The results are consistent with the numerical simulation results, which proves the physical realizability of the five-value memristor-based chaotic system proposed in this paper.
Keywords:  five-valued memristor      chaotic system      hidden attractor      multistability  
Received:  09 May 2021      Revised:  19 July 2021      Accepted manuscript online:  17 August 2021
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  05.45.Pq (Numerical simulations of chaotic systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61203004), the Natural Science Foundation of Heilongjiang Province, China (Grant No. F201220), and the Heilongjiang Provincial Natural Science Foundation of Joint Guidance Project (Grant No. LH2020F022).
Corresponding Authors:  Jian-Hong Xiang     E-mail:

Cite this article: 

Li-Lian Huang(黄丽莲), Shuai Liu(刘帅), Jian-Hong Xiang(项建弘), and Lin-Yu Wang(王霖郁) Design and multistability analysis of five-value memristor-based chaotic system with hidden attractors 2021 Chin. Phys. B 30 100506

[1] Chua L O 1971 IEEE Trans. Circ. Theory 18 507
[2] Chua L O and Kang S M 1976 Proc. IEEE 64 209
[3] Strukov D B, Snider G S, Stewart D R and Williams R S 2008 Nature 453 80
[4] Itoh M and Chua L O 2008 Int. J. Bifurc. Chaos 18 3183
[5] Bao B C, Xu J P and Liu Z 2010 Chin. Phys. Lett. 27 070504
[6] Bao B C, Xu J P, Zhou G H, Ma Z H and Zou L 2011 Chin. Phys. B 20 120502
[7] Bao B C, Liu Z and Xu J P 2010 Chin. Phys. B 19 030510
[8] Muthuswamy B 2010 Int. J. Bifurc. Chaos 20 1335
[9] Liu G Z, Zheng L J, Wang G Y, Shen Y R and Liang Y 2019 IEEE Access 7 43691
[10] Chen C J, Chen J Q, Bao H, Chen M and Bao B C 2019 Nonlinear Dyn. 95 3385
[11] Ying J J, Wang G Y, Dong Y J and Yu S M 2019 Int. J. Bifurc. Chaos 29 1930030
[12] Chen J J, Yan D W, Duan S K and Wang L D 2020 Chin. Phys. B 29 110504
[13] Muthuswamy B and Kokate P P 2009 IETE Tech. Rev. 26 417
[14] Xi H L, Li Y X and Huang X 2014 Entropy 16 6240
[15] Bao B C, Jiang T, Xu Q, Chen M, Wu H G and Hu Y H 2016 Nonlinear Dyn. 86 1711
[16] Wang G Y, Yuan F, Chen G R 2018 Chaos 28 013125
[17] Zhou W, Wang G Y, Shen Y R 2018 Int. J. Bifurc. Chaos 28 1830033
[18] Zhang X, Wang C H. 2019 Int. J. Bifurc. Chaos 29 1950117
[19] Deng Q L, Wang C H and Yang L M 2020 Int. J. Bifurc. Chaos 30 2050086
[20] Yan B, He S B and Wang S J 2020 Math. Probl. Eng. 2020 2468134
[21] Gu S Q, He S B, Wang H H and Du B X 2021 Chaos, Solitons, and Fractals 143 110613
[22] Wang X Y, Zhang X and Gao M 2020 Complexity 2020 6949703
[23] Huang L L, Yao W J, Xiang J H and Zhang Z F 2020 Complexity 2020 2408460
[24] Chua L O 2011 Appl. Phys. A 102 765
[25] Chua L O 2012 Proc. IEEE 100 1920
[26] Adhikari S P, Sah M P, Kim H and Chua L O 2013 IEEE Trans. Circ. Syst. I: Reg. Papers 60 3008
[27] Liu W B and Chen G R 2003 Int. J. Bifurc. Chaos 13 261
[28] Liu W B and Chen G R 2004 Int. J. Bifurc. Chaos 14 1395
[29] Khan A and Singh S 2018 Chin. J. Phys. 56 238
[30] Gottwald G A and Melbourne I 2004 Proc. Math. Phys. Eng. Sci. 460 603
[1] Acoustic wireless communication based on parameter modulation and complex Lorenz chaotic systems with complex parameters and parametric attractors
Fang-Fang Zhang(张芳芳), Rui Gao(高瑞), and Jian Liu(刘坚). Chin. Phys. B, 2021, 30(8): 080503.
[2] Complex network perspective on modelling chaotic systems via machine learning
Tong-Feng Weng(翁同峰), Xin-Xin Cao(曹欣欣), and Hui-Jie Yang(杨会杰). Chin. Phys. B, 2021, 30(6): 060506.
[3] Energy behavior of Boris algorithm
Abdullah Zafar and Majid Khan. Chin. Phys. B, 2021, 30(5): 055203.
[4] Analysis and implementation of new fractional-order multi-scroll hidden attractors
Li Cui(崔力), Wen-Hui Luo(雒文辉), and Qing-Li Ou(欧青立). Chin. Phys. B, 2021, 30(2): 020501.
[5] Continuous non-autonomous memristive Rulkov model with extreme multistability
Quan Xu(徐权), Tong Liu(刘通), Cheng-Tao Feng(冯成涛), Han Bao(包涵), Hua-Gan Wu(武花干), and Bo-Cheng Bao(包伯成). Chin. Phys. B, 2021, 30(12): 128702.
[6] Dynamical analysis, circuit realization, and application in pseudorandom number generators of a fractional-order laser chaotic system
Chenguang Ma(马晨光), Santo Banerjee, Li Xiong(熊丽), Tianming Liu(刘天明), Xintong Han(韩昕彤), and Jun Mou(牟俊). Chin. Phys. B, 2021, 30(12): 120504.
[7] Heterogeneous dual memristive circuit: Multistability, symmetry, and FPGA implementation
Yi-Zi Cheng(承亦梓), Fu-Hong Min(闵富红), Zhi Rui(芮智), and Lei Zhang(张雷). Chin. Phys. B, 2021, 30(12): 120502.
[8] Cascade discrete memristive maps for enhancing chaos
Fang Yuan(袁方), Cheng-Jun Bai(柏承君), and Yu-Xia Li(李玉霞). Chin. Phys. B, 2021, 30(12): 120514.
[9] Adaptive synchronization of chaotic systems with less measurement and actuation
Shun-Jie Li(李顺杰), Ya-Wen Wu(吴雅文), and Gang Zheng(郑刚). Chin. Phys. B, 2021, 30(10): 100503.
[10] A novel method of constructing high-dimensional digital chaotic systems on finite-state automata
Jun Zheng(郑俊), Han-Ping Hu(胡汉平). Chin. Phys. B, 2020, 29(9): 090502.
[11] Hidden attractors in a new fractional-order discrete system: Chaos, complexity, entropy, and control
Adel Ouannas, Amina Aicha Khennaoui, Shaher Momani, Viet-Thanh Pham, Reyad El-Khazali. Chin. Phys. B, 2020, 29(5): 050504.
[12] Multistability and coexisting transient chaos in a simple memcapacitive system
Fu-Ping Wang(王富平), Fa-Qiang Wang(王发强). Chin. Phys. B, 2020, 29(5): 058502.
[13] Dynamics of the two-SBT-memristor-based chaotic circuit
Mei Guo(郭梅), Meng Zhang(张萌), Ming-Long Dou(窦明龙), Gang Dou(窦刚), and Yu-Xia Li(李玉霞). Chin. Phys. B, 2020, 29(11): 110505.
[14] Memristor-based hyper-chaotic circuit for image encryption
Jiao-Jiao Chen(陈娇娇), Deng-Wei Yan(闫登卫), Shu-Kai Duan(段书凯), and Li-Dan Wang(王丽丹). Chin. Phys. B, 2020, 29(11): 110504.
[15] Hopf bifurcation control of a Pan-like chaotic system
Liang Zhang(张良), JiaShi Tang(唐驾时), Qin Han(韩芩). Chin. Phys. B, 2018, 27(9): 094702.
No Suggested Reading articles found!