Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(8): 083203    DOI: 10.1088/1674-1056/ac0528
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Light-shift induced by two unbalanced spontaneous decay rates in EIT (CPT) spectroscopies under Ramsey pulse excitation

Xiaoyan Liu(刘晓艳)1,2, Xu Zhao(赵旭)1,3, Jianfang Sun(孙剑芳)1,2, Zhen Xu(徐震)1,2,†, and Zhengfeng Hu(胡正峰)1,2,3,4,‡
1 The Key Laboratory of Quantum Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai 201800, China;
2 Center of Materials Science and Optoelectronics Engineering, University of the Chinese Academy of Sciences, Beijing 100049, China;
3 Department of Physics, Shanghai University, Shanghai 200444, China;
4 CAS Center for Excellence in Ultra-intense Laser Science, Shanghai 201800, China
Abstract  Light shift is important and inevitably affects the long-term stability of an atomic clock. In this work, considering two unbalanced branches of the spontaneous decay rate in a three-level system, we studied the frequency shifts of electromagnetically induced transparency (EIT) and coherent population trapping (CPT) clocks operating under the pulse sequence regime by numerically solving the Liouville density matrix equations. The results show that the frequency shifts are larger when the two branches of spontaneous emission rate are not equal compared to the equal case. In addition, in EIT-Ramsey, the effect of the unbalanced branches of the spontaneous decay rate and relaxations of low-energy states on the frequency shift is greater than that of Rabi frequency. In CPT-Ramsey, the relaxations of low-energy states play a dominant role in frequency shift.
Keywords:  atom clock      light shfit      laser-atom interaction      quantum optics  
Received:  25 March 2021      Revised:  20 May 2021      Accepted manuscript online:  26 May 2021
PACS:  32.70.Jz (Line shapes, widths, and shifts)  
  32.80.Qk (Coherent control of atomic interactions with photons)  
  37.10.Jk (Atoms in optical lattices)  
  06.20.Jr (Determination of fundamental constants)  
Fund: Project supported by the State Key Laboratory of Low Dimensional Quantum Physics Research Program, Tsinghua University (Grant No. KF201707).
Corresponding Authors:  Zhen Xu, Zhengfeng Hu     E-mail:  xuzhen@siom.ac.cn;zfhu@siom.ac.cn

Cite this article: 

Xiaoyan Liu(刘晓艳), Xu Zhao(赵旭), Jianfang Sun(孙剑芳), Zhen Xu(徐震), and Zhengfeng Hu(胡正峰) Light-shift induced by two unbalanced spontaneous decay rates in EIT (CPT) spectroscopies under Ramsey pulse excitation 2021 Chin. Phys. B 30 083203

[1] Vig J R 1993 IEEE transactions on ultrasonics, ferroelectrics, and frequency control 40 522
[2] Arditi M and Carver T R 1963 Proc. IEEE 51 190
[3] Marangos J P 1998 J. Mod. Opt. 45 471
[4] Fleischhauer M, Imamoglu A and Marangos J P 2005 Rev. Mod. Phys. 77 633
[5] Lukin M D 2003 Rev. Mod. Phys. 75 457
[6] Scully M O and Zubairy M S 1999 Quantum Optics (Cambridge: Cambridge University Press) Chap. 7
[7] Arimondo E 1996 Prog. Opt. 35 257
[8] Budker D and Kimball D F 2013 Optical Magnetometry
[9] Mescher M J, Lutwak R and Varghese M 2005 TRANSDUCERS'05: 13th Int. Conf. on Solid-State Sensors, Actuators and Microsystems, Digest of Technical Papers 1 311
[10] Kitching J, Hollberg L, Knappe S and Wynands R 2011 Electron. Lett. 37 1449
[11] Knappe S, Shah V, Schwindt P D D, Hollberg L, Kitching J, Liew L A and Moreland J 2004 Appl. Phys. Lett. 85 1460
[12] Zanon T, Guerandel S, de Clercq E, Holleville D, Dimarcq N and Clairon A 2005 Phys. Rev. Lett. 94 193002
[13] Kozlova O, Danet J M, Guérandel S and de Clercq E 2014 IEEE Trans. Instrum. Meas. 63 1863
[14] Kotru K, Brown J M, Butts D L, Kinast J M and Stoner R E 2016 Phy. Rev. A 90 053611
[15] Esnault F X, Blanshan E, Ivanov E N, Scholten R E, Kitching J and Donley E A 2013 Phys. Rev. A 88 042120
[16] Zanon-Willette T, Ludlow A D, Blatt S, Boyd M M, Arimondo E and Ye J 2006 Phys. Rev. Lett. 97 233001
[17] Zanon-Willette T, de Clercq E and Arimondo E 2011 Phys. Rev. A 84 062502
[18] Pati G S, Fatemi F K, Bashkansky M and Shahriar S 2010 Proc. SPIE 7949 794910
[19] Yano Y, Gao W J and Goka S 2014 Phys. Rev. A 90 013826
[20] Liu X, Merolla J M, Guerandel S, de Clercq E and Boudot R 2013 Opt. Express 21 12451
[21] Talchenachev A V, Yudin V I, Wynands R, Stahler M, Kitching J and Hollberg L 2003 Phys. Rev. A 67 033810
[22] Pati G S, Warren Z, Yu N and Shahriar M S 2015 J. Opt. Soc. Am. B 32 388
[23] Zanon T, Tremine S, Guerandel S, de Clercq E, Holleville D, Dimarcq N and Clairon A 2005 Instrum. Meas. 54 776
[24] Hemmer P R, Shahriar M S, Natoli V D and Ezekiel S 1989 J. Opt. Soc. Am. B 6 1519
[1] Signal-recycled weak measurement for ultrasensitive velocity estimation
Sen-Zhi Fang(方森智), Yang Dai(戴阳), Qian-Wen Jiang(姜倩文), Hua-Tang Tan(谭华堂), Gao-Xiang Li(李高翔), and Qing-Lin Wu(吴青林). Chin. Phys. B, 2021, 30(6): 060601.
[2] Optical nonreciprocity in a piezo-optomechanical system
Yu-Ming Xiao(肖玉铭), Jun-Hao Liu(刘军浩), Qin Wu(吴琴), Ya-Fei Yu(於亚飞), Zhi-Ming Zhang(张智明). Chin. Phys. B, 2020, 29(7): 074204.
[3] Optical enhanced interferometry with two-mode squeezed twin-Fock states and parity detection
Li-Li Hou(侯丽丽), Shuai Wang(王帅), Xue-Fen Xu(许雪芬). Chin. Phys. B, 2020, 29(3): 034203.
[4] A low-noise, high-SNR balanced homodyne detector for the bright squeezed state measurement in 1-100 kHz range
Jin-Rong Wang(王锦荣), Qing-Wei Wang(王庆伟), Long Tian(田龙), Jing Su(苏静), Yao-Hui Zheng(郑耀辉). Chin. Phys. B, 2020, 29(3): 034205.
[5] Quantum speed limit time of a non-Hermitian two-level system
Yan-Yi Wang(王彦懿), Mao-Fa Fang(方卯发). Chin. Phys. B, 2020, 29(3): 030304.
[6] Construction of Laguerre polynomial's photon-added squeezing vacuum state and its quantum properties
Dao-Ming Lu(卢道明). Chin. Phys. B, 2020, 29(3): 030301.
[7] Realization of ultralow power phase locking by optimizing Q factor of resonant photodetector
Jin-Rong Wang(王锦荣), Hong-Yu Zhang(张宏宇), Zi-Lin Zhao(赵子琳), and Yao-Hui Zheng(郑耀辉). Chin. Phys. B, 2020, 29(12): 124207.
[8] Quantum optical interferometry via general photon-subtracted two-mode squeezed states
Li-Li Hou(侯丽丽), Jian-Zhong Xue(薛建忠), Yong-Xing Sui(眭永兴), Shuai Wang(王帅). Chin. Phys. B, 2019, 28(9): 094217.
[9] Development of the integrated integrating sphere cold atom clock
Ming-Yuan Yu(于明圆), Yan-Ling Meng(孟艳玲), Mei-Feng Ye(叶美凤), Xin Wang(王鑫), Xin-Chuan Ouyang(欧阳鑫川), Jin-Yin Wan(万金银), Ling Xiao(肖玲), Hua-Dong Cheng(成华东), Liang Liu(刘亮). Chin. Phys. B, 2019, 28(7): 070602.
[10] Quantum interferometry via a coherent state mixed with a squeezed number state
Li-Li Hou(侯丽丽), Yong-Xing Sui(眭永兴), Shuai Wang(王帅), Xue-Fen Xu(许雪芬). Chin. Phys. B, 2019, 28(4): 044203.
[11] Double-passage mechanical cooling in a coupled optomechanical system
Qing-Xia Mu(穆青霞), Chao Lang(郎潮), Wen-Zhao Zhang(张闻钊). Chin. Phys. B, 2019, 28(11): 114206.
[12] Controllable transmission of vector beams in dichroic medium
Yun-Ke Li(李云珂), Jin-Wen Wang(王金文), Xin Yang(杨欣), Yun Chen(陈云), Xi-Yuan Chen(陈熙远), Ming-Tao Cao(曹明涛), Dong Wei(卫栋), Hong Gao(高宏), Fu-Li Li(李福利). Chin. Phys. B, 2019, 28(1): 014205.
[13] Effects of the Casimir force on the properties of a hybrid optomechanical system
Yi-Ping Wang(王一平), Zhu-Cheng Zhang(张筑城), Ya-Fei Yu(於亚飞), Zhi-Ming Zhang(张智明). Chin. Phys. B, 2019, 28(1): 014202.
[14] Corrections to atomic ground state energy due to interaction between atomic electric quadrupole and optical field
Jie Hu(胡洁), Yu Chen(陈宇), Yi-Xiu Bai(白伊秀), Pei-Song He(何培松), Qing Sun(孙青), An-Chun Ji(纪安春). Chin. Phys. B, 2018, 27(4): 043202.
[15] Multi-window transparency and fast-slow light switching in a quadratically coupled optomechanical system assisted with three-level atoms
Wan-Ying Wei(魏晚迎), Ya-Fei Yu(於亚飞), Zhi-Ming Zhang(张智明). Chin. Phys. B, 2018, 27(3): 034204.
No Suggested Reading articles found!