Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(4): 040702    DOI: 10.1088/1674-1056/20/4/040702
GENERAL Prev   Next  

Measurement of inner surface roughness of capillary by an x-ray reflectivity method

Li Yu-De(李玉德),Lin Xiao-Yan(林晓燕),Tan Zhi-Yuan(谭植元), Sun Tian-Xi(孙天希),and Liu Zhi-Guo(刘志国)
The Key Laboratory of Beam Technology and Material Modification of Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing Radiation Center, Beijing 100875, China
Abstract  The inner surface roughness of a capillary is investigated by the reflectivity of x-rays penetrating through the capillary. The results are consistent with the data from atomic force microscope (AFM). The roughness measured by this new method can reach the order of angstroms with high quality capillaries.
Keywords:  inner surface roughness      reflectivity method      capillary  
Received:  31 December 2010      Revised:  04 January 2011      Accepted manuscript online: 
PACS:  07.85.-m (X- and γ-ray instruments)  
Fund: Project supported by the Natural Science Foundation of Beijing, China (Grant No. 1102019) and the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20100003120010).

Cite this article: 

Li Yu-De(李玉德),Lin Xiao-Yan(林晓燕),Tan Zhi-Yuan(谭植元), Sun Tian-Xi(孙天希),and Liu Zhi-Guo(刘志国) Measurement of inner surface roughness of capillary by an x-ray reflectivity method 2011 Chin. Phys. B 20 040702

[1] Lin X Y, Li Y D, Tan G T and Sun T X 2007 Chin. Phys. Lett.24 3368
[2] Bjeoumikhov A, Arkadiev V, Eggert F, Hodoroaba V D, Langhoff N, Procop M, Rabe J and Wedell R 2005 X-Ray Spectrom.34 493
[3] Langer E, Dabritz S, Hauffe W and Haschke M 2005 Appl. Surf. Sci.252 240
[4] Lin X Y, Wang Z H, Sun T X, Pan Q L and Ding X L 2008 Nucl. Instrum. Methods Phys. Res. B266 2638
[5] Bjeoumikhov A, Langhoff N, Bjeoumikhova S and Wedell R 2005 Rev. Sci. Instrum.76 063115
[6] Yan Y M and Ding X L 2005 X-Ray Spectrom.34 235
[7] Liu A D 2005 Nucl. Instrum. Methods Phys. Res. B234 555
[8] Mildner D F R, Chen-Mayer H H and Gibson W M 2002 J. Appl. Phys.92 6911
[9] Matsuura Y, Oyama T and Miyagi M 2005 Appl. Opt.44 6193
[10] Mroczka R, Zukocinski R G and Kuczumow A 2005 J. Alloys Compd.401 108
[11] Mroczka R, Bartosik P, Sawlowicz Z, Skrzypiec K, Falkenberg G, Wójcik J, .Zkoci'nski G and Kuczumow A 2008 Thin Solid Films516 8029
[12] Singh S B, Poswal A K, Pandey M, Tokas R B, Chand N, Dhara S, Sundaravel B, Nair K G M, Sahoo N K and Patil D S 2009 Surface and Coatings Technology203 986
[13] Matyi R J, Depero L E, Bontempi E, Colombi P, Gibaud A, Jergel M, Krumrey M, Lafford T A, Lamperti A, Meduna M, van der Lee A and Wiemer C 2008 Thin Solid Films516 7962
[14] Edon V, Hugon M C, Agius B, Durand O, Eypert C and Cardinaud C 2008 Thin Solid Films516 7974
[1] Resistance law of a rod penetrating a multilayer granular raft
Zonglin Li(李宗霖), Qiang Tian(田强), and Haiyan Hu(胡海岩). Chin. Phys. B, 2023, 32(3): 034501.
[2] X-ray focusing using an x-ray lens composed of multi-square polycapillary slices
Kai Pan(潘凯), Tian-Cheng Yi(易天成), Zhao Wang(王瞾), Mo Zhou(周末), Yu-De Li(李玉德), Zhi-Guo Liu(刘志国), Xiao-Yan Lin(林晓燕), and Tian-Xi Sun(孙天希). Chin. Phys. B, 2022, 31(2): 020701.
[3] Detailed characterization of polycapillary focusing x-ray lenses by a charge-coupled device detector and a pinhole
Xue-Peng Sun(孙学鹏), Shang-Kun Shao(邵尚坤), Hui-Quan Li(李惠泉), Tian-Yu Yuan(袁天语), and Tian-Xi Sun(孙天希). Chin. Phys. B, 2022, 31(12): 120702.
[4] Characterization and application in XRF of HfO2-coated glass monocapillary based on atomic layer deposition
Yan-Li Li(李艳丽), Ya-Bing Wang(王亚冰), Wei-Er Lu(卢维尔), Xiang-Dong Kong(孔祥东), Li Han(韩立), and Hui-Bin Zhao(赵慧斌). Chin. Phys. B, 2021, 30(5): 050703.
[5] Analysis of natural frequency for imaging interface in liquid lens
Na Xie(谢娜). Chin. Phys. B, 2021, 30(10): 104702.
[6] Gravity-capillary waves modulated by linear shear flow in arbitrary water depth
Shaofeng Li(李少峰), Jinbao Song(宋金宝), and Anzhou Cao(曹安州). Chin. Phys. B, 2020, 29(12): 124702.
[7] Energy stored in nanoscale water capillary bridges formed between chemically heterogeneous surfaces with circular patches
Bin-Ze Tang(唐宾泽), Xue-Jia Yu(余雪佳), Sergey V. Buldyrev, Nicolas Giovambattista§, and Li-Mei Xu(徐莉梅)¶. Chin. Phys. B, 2020, 29(11): 114703.
[8] Capillary filling in closed-end nanotubes
Chen Zhao(赵晨), Jiajia Zhou(周嘉嘉), Masao Doi. Chin. Phys. B, 2018, 27(2): 024701.
[9] A multicomponent multiphase lattice Boltzmann model with large liquid-gas density ratios for simulations of wetting phenomena
Qing-Yu Zhang(张庆宇), Dong-Ke Sun(孙东科), Ming-Fang Zhu(朱鸣芳). Chin. Phys. B, 2017, 26(8): 084701.
[10] Instabilities of thermocapillary-buoyancy convection in open rectangular liquid layers
Huan Jiang(姜欢), Li Duan(段俐), Qi Kang(康琦). Chin. Phys. B, 2017, 26(11): 114703.
[11] Simulations of guiding of low-energy ions through a single nanocapillary in insulating materials
Shi-Dong Liu(刘世东), Yong-Tao Zhao(赵永涛), Yu-Yu Wang(王瑜玉). Chin. Phys. B, 2017, 26(10): 106104.
[12] Determining the imaging plane of a retinal capillary layer in adaptive optical imaging
Le-Bao Yang(杨乐宝), Li-Fa Hu(胡立发), Da-Yu Li(李大禹), Zhao-Liang Cao(曹召良), Quan-Quan Mu(穆全全), Ji Ma(马骥), Li Xuan(宣丽). Chin. Phys. B, 2016, 25(9): 094219.
[13] Property of slice square polycapillary x-ray optics
Shi-Qi Peng(彭诗棋), Zhi-Guo Liu(刘志国), Tian-Xi Sun(孙天希), Kai Wang(王锴), Long-Tao Yi(易龙涛), Kui Yang(杨魁), Man Chen(陈曼), Jin-Bang Wang(王金榜). Chin. Phys. B, 2016, 25(2): 024102.
[14] Polycapillary X-ray lens for secondary focusing Beijing synchrotron radiation source
Li Yu-De (李玉德), Lin Xiao-Yan (林晓燕), Liu Shi-Gang (刘世岗), He Jin-Long (何金龙), Guo Fei (郭非), Sun Tian-Xi (孙天希), Liu Peng (刘鹏). Chin. Phys. B, 2013, 22(4): 044103.
[15] Simulation of x-ray transmission through an ellipsoidal capillary
Lin Xiao-Yan (林晓燕), Li Yu-De (李玉德), Sun Tian-Xi (孙天希), Pan Qiu-Li (潘秋丽). Chin. Phys. B, 2010, 19(7): 070205.
No Suggested Reading articles found!