Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(7): 077202    DOI: 10.1088/1674-1056/ac4f53
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Current spin polarization of a platform molecule with compression effect

Zhi Yang(羊志)1, Feng Sun(孙峰)1, Deng-Hui Chen(陈登辉)1, Zi-Qun Wang(王子群)2, Chuan-Kui Wang(王传奎)1, Zong-Liang Li(李宗良)1,†, and Shuai Qiu(邱帅)1,‡
1 Shandong Key Laboratory of Medical Physics and Image Processing&Shandong Provincial Engineering and Technical Center of Light Manipulations, School of Physics and Electronics, Shandong Normal University, Jinan 250358, China;
2 Zao Zhuang University, Zao Zhuang 277160, China
Abstract  Using the first-principles method, the spin-dependent transport properties of a novel platform molecule containing a freestanding molecular wire is investigated by simulating the spin-polarized scanning tunneling microscope experiment with Ni tip and Au substrate electrodes. Transport calculations show that the total current increases as the tip gradually approaches to the substrate, which is consistent with the conductance obtained from previous experiment. More interestingly, the spin polarization (SP) of current modulated by compression effect has the completely opposite trend to the total current. Transmission analyses reveal that the reduction of SP of current with compression process originates from the promotion of spin-down electron channel, which is controlled by deforming the molecule wire. In addition, the density of states shows that the SP of current is directly affected by the organic-ferromagnetic spinterface. The weak orbital hybridization between the Ni tip and propynyl of molecule results in high interfacial SP, whereas the breaking of the C $\equiv$ C triple of propynyl in favor of the Ni-C-C bond induces the strong orbital hybridization and restrains the interfacial SP. This work proposes a new way to control and design the SP of current through organic-ferromagnetic spinterface using functional molecular platform.
Keywords:  molecular spintronics      spin-dependent transport      spin polarization      single-molecule junctions  
Received:  16 December 2021      Revised:  13 January 2022      Accepted manuscript online:  27 January 2022
PACS:  72.25.-b (Spin polarized transport)  
  75.47.-m (Magnetotransport phenomena; materials for magnetotransport)  
  85.75.-d (Magnetoelectronics; spintronics: devices exploiting spin polarized transport or integrated magnetic fields)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11974217 and 11874242) and the Natural Science Foundation of Shandong Province, China (Grant No. ZR2018MA037).
Corresponding Authors:  Zong-Liang Li, Shuai Qiu     E-mail:  lizongliang@sdnu.edu.cn;shuaiqiu@sdnu.edu.cn

Cite this article: 

Zhi Yang(羊志), Feng Sun(孙峰), Deng-Hui Chen(陈登辉), Zi-Qun Wang(王子群), Chuan-Kui Wang(王传奎), Zong-Liang Li(李宗良), and Shuai Qiu(邱帅) Current spin polarization of a platform molecule with compression effect 2022 Chin. Phys. B 31 077202

[1] Naber W J M, Faez S and Wiel W G V 2007 J. Phys. D:Appl. Phys. 40 R205
[2] Sanvito S 2011 Chem. Soc. Rev. 40 3336
[3] Lv X R, Liang S H, Tao L L and Han X F 2014 Spin 4 1440013
[4] Gu X R, Guo L D and Sun X N 2018 Chin. Phys. B 27 107202
[5] Hirohata A, Yamada K, Nakatani Y, Prejbeanu I L, Diény B, Pirro P and Hillebrands B 2020 J. Magn. Magn. Mater. 509 166711
[6] Rocha A R, Garcia-Suarez V M, Bailey S W, Lambert C J, Ferrer J and Sanvito S 2005 Nat. Mater. 4 335
[7] Sun D, Ehrenfreund E and Valy Z V 2014 Chem. Commun. 50 1781
[8] Sanvito S 2010 Nat. Phys. 6 562
[9] Barraud C, Seneor P, Mattana R, Fusil S, Bouzehouane K, Deranlot C, Graziosi P, Hueso L, Bergenti I, Dediu V, Petroff F and Fert A 2010 Nat. Phys. 6 615
[10] Sun M and Mi W 2018 J. Mater. Chem. C 6 6619
[11] Cinchetti M, Dediu V A and Hueso L E 2017 Nat. Mater. 16 507
[12] Delprat S, Galbiati M, Tatay S, Quinard B, Barraud C, Petroff F, Seneor P and Mattana R 2018 J. Phys. D:Appl. Phys. 51 473001
[13] Galbiati M, Tatay S, Barraud C, Dediu A V, Petroff F, Mattana R and Seneor P 2014 MRS Bull. 39 602
[14] Guo L, Gu X, Zhu X and Sun X 2019 Adv. Mater. 31 1805355
[15] Raman K V, Kamerbeek A M, Mukherjee A, Atodiresei N, Sen T K, Lazic P, Caciuc V, Michel R, Stalke D, Mandal S K, Blügel S, Münzenberg M and Moodera J S 2013 Nature 493 509
[16] Li D and Smogunov A 2021 Phys. Rev. B 103 085432
[17] Qiu S, Miao Y Y, Zhang G P, Ren J F, Wang C K and Hu G C 2020 J. Phys. Chem. C 124 12144
[18] Qiu S, Miao Y Y, Zhang G P, Ren J F, Wang C K and Hu G C 2020 J. Mater. Sci. 55 16311
[19] Qiu S, Miao Y Y, Zhang G P, Ren J F, Wang C K and Hu G C 2019 J. Magn. Magn. Mater. 479 247
[20] Li S, Wang Y D, Wang Y F, Sanvito S and Hou S M 2021 J. Phys. Chem. C 125 6945
[21] Li D, Banerjee R, Mondal S, Maliyov I, Romanova M, Dappe Y J and Smogunov A 2019 Phys. Rev. B 99 115403
[22] Niu L L, Fu H Y, Suo Y Q, Liu R, Sun F, Wang S S, Zhang G P, Wang C K and Li Z L 2021 Physica E 128 114542
[23] Koley S and Chakrabarti S 2017 J. Phys. Chem. C 121 21695
[24] Deng Y X, Chen S Z, Zeng Y, Zhou W X and Chen K Q 2017 Org. Electron. 50 184
[25] Cardona-Serra S, Gaita-Ariño A, Stamenova M and Sanvito S 2017 J. Phys. Chem. Lett. 8 3056
[26] Dhungana K B and Pati R 2014 Appl. Phys. Lett. 104 162404
[27] Zhao W K, Zou D Q, Yang C L and Sun Z P 2017 J. Mater. Chem. C 5 8862
[28] Wang Z Q, Tang F, Dong M M, Wang M L, Hu G C, Leng J C, Wang C K and Zhang G P 2020 Chin. Phys. B 29 067202
[29] Jasper-Tönnies T, Garcia-Lekue A, Frederiksen T, Ulrich S, Herges R and Berndt R 2017 Phys. Rev. Lett. 119 066801
[30] Wei Z M, Wang X T, Borges A, Santella M, Li T, Sorensen J K, Vanin M, Hu W P, Liu Y Q, Ulstrup J, Solomon G C, Chi Q J, Bjornholm T, Norgaard K and Laursen B W 2014 Langmuir 30 14868
[31] Jasper-Tönnies T, Garcia-Lekue A, Frederiksen T, Ulrich S, Herges R and Berndt R 2019 J. Phys.:Condens. Matter 31 18LT01
[32] Jasper-Tönnies T, Weismann A, Frederiksen T, Garcia-Lekue A, Ulrich S, Herges R and Berndt R 2019 Phys. Rev. B 99 245417
[33] Jasper-Tönnies T, Poltavsky I, Ulrich S, Moje T, Tkatchenko A, Herges R and Berndt R 2018 J. Chem. Phys. 149 244705
[34] Brandbyge M, Mozos J L, Ordejón P, Taylor J and Stokbro K 2002 Phys. Rev. B 65 165401
[35] José M S, Emilio A, Julian D G, Alberto G, Javier J, Pablo O and Daniel S P 2002 J. Phys.:Condens. Matter 14 2745
[36] Atomistix ToolKit version 2018.06, Synopsys QuantumWise A/S (www.quantumwise.com)
[37] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[38] Troullier N and Martins J 1990 Solid State Commun. 74 613
[39] Liu R, Bi J J, Xie Z, Yin K, Wang D, Zhang G P, Xiang D, Wang C K and Li Z L 2018 Phys. Rev. Appl. 9 54023
[40] Li Z L, Bi J J, Liu R, Yi X H, Fu H Y, Sun F, Wei M Z and Wang C K 2017 Chin. Phys. B 26 098508
[41] Landauer R 1970 Philos. Mag. 21 863
[42] Larade B, Taylor J, Zheng Q R, Mehrez H, Pomorski P and Guo H 2001 Phys. Rev. B 64 195402
[1] Half-metallicity induced by out-of-plane electric field on phosphorene nanoribbons
Xiao-Fang Ouyang(欧阳小芳) and Lu Wang(王路). Chin. Phys. B, 2022, 31(7): 077304.
[2] Theoretical design of thermal spin molecular logic gates by using a combinational molecular junction
Yi Guo(郭逸), Peng Zhao(赵朋), and Gang Chen(陈刚). Chin. Phys. B, 2022, 31(4): 047202.
[3] Separating spins by dwell time of electrons across parallel double δ-magnetic-barrier nanostructure applied by bias
Sai-Yan Chen(陈赛艳), Mao-Wang Lu(卢卯旺), and Xue-Li Cao(曹雪丽). Chin. Phys. B, 2022, 31(1): 017201.
[4] Optical state selection process with optical pumping in a cesium atomic fountain clock
Lei Han(韩蕾), Fang Fang(房芳), Wei-Liang Chen(陈伟亮), Kun Liu(刘昆), Ya-Ni Zuo(左娅妮), Fa-Song Zheng(郑发松), Shao-Yang Dai(戴少阳), and Tian-Chu Li(李天初). Chin. Phys. B, 2021, 30(8): 080602.
[5] Spin-exchange relaxation of naturally abundant Rb in a K-Rb-21Ne self-compensated atomic comagnetometer
Yan Lu(卢妍), Yueyang Zhai(翟跃阳), Yong Zhang(张勇), Wenfeng Fan(范文峰), Li Xing(邢力), Wei Quan(全伟). Chin. Phys. B, 2020, 29(4): 043204.
[6] Designing of spin filter devices based on zigzag zinc oxide nanoribbon modified by edge defect
Bao-Rui Huang(黄保瑞), Fu-Chun Zhang(张富春), Yan-Ning Yang(杨延宁), Zhi-Yong Zhang(张志勇), Wei-Guo Wang(王卫国). Chin. Phys. B, 2019, 28(10): 108503.
[7] Recent spinterfacial studies targeted to spin manipulation in molecular spintronic devices
Xian-Rong Gu(谷现荣), Li-Dan Guo(郭立丹), Xiang-Nan Sun(孙向南). Chin. Phys. B, 2018, 27(10): 107202.
[8] Spin polarization and dispersion effects in emergence of roaming transition state for nitrobenzene isomerization
Zhi-Yuan Zhang(张志远), Wan-Run Jiang(姜万润), Bo Wang(王波), Yan-Qiang Yang(杨延强), Zhi-Gang Wang(王志刚). Chin. Phys. B, 2018, 27(1): 013102.
[9] Two types of ground-state bright solitons in a coupled harmonically trapped pseudo-spin polarization Bose–Einstein condensate
T F Xu(徐天赋). Chin. Phys. B, 2018, 27(1): 016702.
[10] Optical pumping nuclear magnetic resonance system rotating in a plane parallel to the quantization axis
Zhi-Chao Ding(丁志超), Jie Yuan(袁杰), Hui Luo(罗晖), Xing-Wu Long(龙兴武). Chin. Phys. B, 2017, 26(9): 093301.
[11] Current induced nonequilibrium spin polarization in semiconductor-nanowire/s-wave superconductor junctions with strong spin-orbit coupling
Nai-Qing Liu(刘乃清), Li-Jie Huang(黄立捷), Rui-Qiang Wang(王瑞强), Liang-Bin Hu(胡梁宾). Chin. Phys. B, 2016, 25(2): 027201.
[12] Optical nuclear spin polarization in quantum dots
Ai-Xian Li(李爱仙), Su-Qing Duan(段素青), Wei Zhang(张伟). Chin. Phys. B, 2016, 25(10): 108506.
[13] Current-induced pseudospin polarization in silicene
Wang Lei (王磊), Zhu Guo-Bao (朱国宝). Chin. Phys. B, 2014, 23(9): 098503.
[14] Properties of pseudospin polarization on a graphene-based spin singlet superconducting junction
Jia Shuan-Wen (贾拴稳), Wang Jun-Tao (王军涛), Yang Yan-Ling (杨艳岭), Bai Chun-Xu (白春旭). Chin. Phys. B, 2013, 22(8): 087408.
[15] Confined states and spin polarization on a topological insulator thin film modulated by an electric potential
Liu Yi-Man (刘一曼), Shao Huai-Hua (邵怀华), Zhou Xiao-Ying (周小英), Zhou Guang-Hui (周光辉). Chin. Phys. B, 2013, 22(7): 077310.
No Suggested Reading articles found!