Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(12): 120511    DOI: 10.1088/1674-1056/ac1e1f
Special Issue: SPECIAL TOPIC— Interdisciplinary physics: Complex network dynamics and emerging technologies
SPECIAL TOPIC—Interdisciplinary physics: Complex network dynamics and emerging technologies Prev   Next  

Embedding any desired number of coexisting attractors in memristive system

Chunbiao Li(李春彪)1,2,†, Ran Wang(王然)1,2, Xu Ma(马旭)1,2, Yicheng Jiang(姜易成)1,2, and Zuohua Liu(刘作华)3
1 Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology(CICAEET), Nanjing University of Information Science & Technology, Nanjing 210044, China;
2 School of Artificial Intelligence, Nanjing University of Information Science & Technology, Nanjing 210044, China;
3 State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China
Abstract  A simple variable-boostable system is selected as the structure for hosting an arbitrarily defined memristor for chaos producing. The derived three-dimensional (3-D) memristive chaotic system shows its distinct property of offset, amplitude and frequency control. Owing its merits any desired number of coexisting attractors are embedded by means of attractor doubling and self-reproducing based on function-oriented offset boosting. In this circumstance two classes of control gates are found:one determines the number of coexisting attractors resorting to the independent offset controller while the other is the initial condition selecting any one of them. Circuit simulation gives a consistent output with theoretically predicted embedded attractors.
Keywords:  offset boosting      attractor doubling      attractor self-reproducing      memristive system  
Received:  10 July 2021      Revised:  05 August 2021      Accepted manuscript online:  17 August 2021
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  05.45.Ac (Low-dimensional chaos)  
  05.45.Pq (Numerical simulations of chaotic systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61871230 and 51974045) and the Natural Science Foundation of Jiangsu Province, China (Grant No. BK20181410).
Corresponding Authors:  Chunbiao Li     E-mail:  goontry@126.com, chunbiaolee@nuist.edu.cn

Cite this article: 

Chunbiao Li(李春彪), Ran Wang(王然), Xu Ma(马旭), Yicheng Jiang(姜易成), and Zuohua Liu(刘作华) Embedding any desired number of coexisting attractors in memristive system 2021 Chin. Phys. B 30 120511

[1] Chua L O 1971 IEEE Trans. Circuit Theory 18 507
[2] Chua L O and Kang S M 1976 Proc. IEEE 64 209
[3] Chua L O 2014 Semiconductor Science Technology 29 104001
[4] Adhikari S P, Sah M P, Kim H and Chua L O 2013 IEEE Trans. Circuits Syst. I 60 3008
[5] Peng Y X, Sun K H and He S B 2020 Chaos, Solitons & Fractals 137 109873
[6] Qin C, Sun K H and He S B 2021 Electronics 10 841
[7] Lai Q, Wan Z Q, Kuate P D K and Fotsin H 2020 Communications in Nonlinear Science and Numerical Simulation 89 105341
[8] Peng Y X, He S B and Sun K H 2021 Results in Physics 24 104106
[9] Zhang X H, Wu Z Z and Chua L O 2020 Inter. J. Bifurcat. Chaos 30 2030023
[10] Ruan J Y, Sun K H, Mou J, He S B and zhang L M 2018 Euro. Phys. J. Plus 133 3
[11] Peng Y X, He S B and Sun K H 2020 AEU-International Journal of Electronics and Communications 129 153539
[12] Wan Q Z, Zhou Z T, Ji W K, Wang C H and Yu F 2020 Complexity 1 1
[13] Cheng Y Z, Min F H, Rui Z and Zhang L 2021 Chin. Phys. B
[14] Chang H, Li Y X, Chen G R and Yuan F 2020 Inter. J. Bifurcat. Chaos 30 434
[15] Li Z J, Zhou C Y and Wang M J 2019 AEU-International Journal of Electronics and Communications 100 127
[16] Yuan F, Wang G Y and Wang X W 2016 Chaos 26 507
[17] Li C, Min F H, Jin Q S and Ma H Y 2017 AIP Adv. 7 125204
[18] Lin H R, Wang C H and Tan Y M 2020 Nonlinear Dyn. 99 2369
[19] Chang H, Li Y X, Yuan F and Chen G R 2019 Inter. J. Bifurcat. Chaos 29 1950086
[20] Zhang Y Z, Liu Z, Wu H G, Chen S Y and Bao B C 2019 Euro. Phys. J. Spec. Top. 228 1995
[21] Lai Q, Wan Z Q, Kengne L K, Kamdem Kuate P D and Chen C Y 2021 IEEE Trans. Circuits Syst. II 68 2197
[22] Jin Q S, Min F H and Li C B 2019 Chin. J. Phys. 62 342
[23] Gu J C, Li C B, Chen Y D, Herbert I U and Lei T F 2020 IEEE Access 8 12394
[24] Bao H, Hua Z Y, Li H Z, Chen M and Bao B C 2021 IEEE Trans. Circuits Syst. I 99 1
[25] Li C B, Sprott J C, Liu Y J, Gu Z Y and Zhang J W 2018 Inter. J. Bifurcat. Chaos 28 1850163
[26] Li C B, Sun J Y, Lu T A and Lei T F 2020 Symmetry 12 574
[27] Gu Z Y, Li C B, Pei X F, Tao C Y and Liu Z H 2020 Euro. Phys. J. Spec. Top. 229 1007
[28] Li C B, Sun J Y, Lu T A, Sprott J C and Liu Z H 2020 Chaos 30 063144
[29] Sun J Y, Li C B, Lu T A, Akgul A and Min F H 2020 IEEE Access 2 139289
[30] Kong S X, Li C B, Jiang H B, Lai Q and Jiang X W 2021 Chaos 31 043121
[31] Li C B and Sprott J C 2016 Optik 127 10389
[32] Li C B, Lu T A, Chen G R and Xing H Y 2019 Chaos 29 51102
[1] Linear synchronization and circuit implementation of chaotic system with complete amplitude control
Chun-Biao Li(李春彪), Wesley Joo-Chen Thio, Julien Clinton Sprott, Ruo-Xun Zhang(张若洵), Tian-Ai Lu(陆天爱). Chin. Phys. B, 2017, 26(12): 120501.
[2] Computation of the locus crossing point location of MC circuit
Liu Hai-Jun, Li Zhi-Wei, Bu Kai, Sun Zhao-Lin, Nie Hong-Shan. Chin. Phys. B, 2014, 23(4): 048401.
[3] Memristance controlling approach based on modification of linear M-q curve
Liu Hai-Jun, Li Zhi-Wei, Yu Hong-Qi, Sun Zhao-Lin, Nie Hong-Shan. Chin. Phys. B, 2014, 23(11): 118402.
No Suggested Reading articles found!