Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(9): 097402    DOI: 10.1088/1674-1056/ac11ea

Barrier or easy-flow channel: The role of grain boundary acting on vortex motion in type-II superconductors

Yu Liu(刘宇), Xiao-Fan Gou(苟晓凡)†,‡, and Feng Xue(薛峰)
College of Mechanics and Materials, Hohai University, Nanjing 211100, China
Abstract  Grain boundaries (GBs), as extremely anisotropic pinning defects, have a strong impact on vortex motion in type-Ⅱ superconductors, and further on the macro level dominates the superconductivity for example the critical current density. Many previous studies indicated that mostly GB plays the role of a strong barrier for vortex motion, while an easy-flow channel just under some certain conditions. In order to thoroughly make clear of the questions of what is exactly the role of GB on vortex motion and how it works, in this article we developed a large scale molecular dynamic model and revealed the action of GB on vortex motion in type-Ⅱ superconductors. The most significant finding is that the role of GB on vortex motion can be changeable from a barrier to an easy-flow channel, and which is intrinsically determined by the competition effect correlated with its action on vortex between in the GB and no-GB regions. Such the competition effect essentially depends on the attributes of both the GB (described by the GB strength and angle θ) and no-GB pining regions (by the relative disorder strength αp/αv). Specifically, for a YBa2Cu3O7-x (YBCO) sample, to obtain a clear knowledge of vortex motion in GB region, we visualized the three typical trajectories of vortices during the three vortex movement stages. Further, in order to understand how GB results in the macro current-carrying property, corresponding to the current-voltage relation of the YBCO conductor, we obtained the average velocity vy of vortices varying with their driving force, which is nearly identical with the previous observations.
Keywords:  type-II superconductors      grain boundary (GB)      vortex motion      competition effect      GB strength      the relative disorder strength αp/αv  
Received:  10 June 2021      Revised:  30 June 2021      Accepted manuscript online:  07 July 2021
PACS:  74.25.Wx (Vortex pinning (includes mechanisms and flux creep))  
  74.72.-h (Cuprate superconductors)  
  74.78.-w (Superconducting films and low-dimensional structures)  
Fund: Project supported financially by the National Natural Science Foundation of China (Grant No. 12072101) and the Fundamental Research Funds for the Central Universities, China (Grant No. 2018B48714).
Corresponding Authors:  Xiao-Fan Gou     E-mail:

Cite this article: 

Yu Liu(刘宇), Xiao-Fan Gou(苟晓凡), and Feng Xue(薛峰) Barrier or easy-flow channel: The role of grain boundary acting on vortex motion in type-II superconductors 2021 Chin. Phys. B 30 097402

[1] Nattermann T and Scheidl S 2000 Adv. Phys. 49 607
[2] Faleski M, Marchetti M and Middleton A 1996 Phys. Rev. B 54 12427
[3] Dinner R B, Robinson A P, Wimbush S C, MacManus-Driscoll J L and Blamire M G 2011 Supercond. Sci. Technol. 24 55017
[4] Horide T, Matsukida N, Ishimaru M, Kita R, Awaji S and Matsumoto K 2017 Appl. Phys. Lett. 110 052601
[5] He A, Xue C and Zhou Y 2018 Chin. Phys. B 27 057402
[6] Roas B, Schultz L and Saemann-Ischenko G 1990 Phys. Rev. Lett. 64 479
[7] Hylton T L and Beasley M R 1990 Phys. Rev. B 41 11669
[8] Daeumling M, Seuntjens J M and Larbalestier D C 1990 Nature 346 332
[9] Klaassen F C, Doornbos G, Huijbregtse J M, van der Geest R C F, Dam B and Griessen R 2001 Phys. Rev. B 64 184523
[10] Lin Z W, Gu G D, Mahmoud A S and Russell G J 2001 Physica C 349 95
[11] Pan V, Cherpak Y, Komashko V, Pozigun S, Tretiatchenko C, Semenov A, Pashitskii E and Pan A V 2006 Phys. Rev. B 73 054508
[12] Matsumoto K and Mele P 2010 Supercond. Sci. Technol. 23 014001
[13] Schalk R M, Kundzins K, Weber H W, Stangl E, Proyer S and Bäuerle D 1996 Physica C 257 341
[14] Dong L, Wu X, Hu Y, Xu X and Bao H 2021 Chin. Phys. Lett. 38 027202
[15] Dong C, Huang H and Ma Y 2019 Chin. Phys. Lett. 36 067401
[16] Reichhardt C, Olson C and Nori F 2000 Phys. Rev. B 61 3665
[17] Enomoto Y and Mitsuda T 2002 Physica C 367 60
[18] Xue F, Zhang Z, Zeng J and Gou X 2016 AIP Adv. 6 055313
[19] Xue F and Gou X 2016 J. Supercond. Nov. Magn. 29 2221
[20] Asai H and Watanabe S 2008 Phys. Rev. B 77 224514
[21] Xue F, Gu Y and Gou X 2016 J. Supercond. Nov. Magn. 29 2711
[22] Hilgenkamp H and Mannhart J 2002 Rev. Mod. Phys. 74 485
[23] Durán C A, Gammel P L, Wolfe R, Fratello V J, Bishop D J, Rice J P and Ginsberg D M 1992 Nature 357 474
[24] Vlasko-Vlasov V K, Dorosinskii L A, Polyanskii A A, Nikitenko V I, Welp U, Veal B W and Crabtree G W 1994 Phys. Rev. Lett. 72 3246
[25] Zhu B, Dong J, Xing D and Wang Z 1998 Phys. Rev. B 57 5075
[26] Jiang L, Xu W W, Hua T, Yu M, An D Y, Chen J, Jin B B, Kang L and Wu P H 2015 Sci. China Technol. Sci. 58 493
[27] Chaturvedi H, Galliher N, Dobramysl U, Pleimling M and Täuber U C 2018 Eur. Phys. J. B 91 1
[28] Marchetti M C and Vinokur V M 1994 Phys. Rev. Lett. 72 3409
[29] Marchetti M C and Vinokur V M 1995 Phys. Rev. B 51 16276
[30] Fily Y, Olive E, Di Scala N and Soret J C 2010 Phys. Rev. B 82 134519
[31] Di Scala N, Olive E, Lansac Y, Fily Y and Soret J C 2012 New J. Phys. 14 123027
[32] Zhu B Y, Xing D Y, Dong J and Zhao B R 1999 Physica C 311 140
[1] Effect of grain boundary energy anisotropy on grain growth in ZK60 alloy using a 3D phase-field modeling
Yu-Hao Song(宋宇豪), Ming-Tao Wang(王明涛), Jia Ni(倪佳), Jian-Feng Jin(金剑锋), and Ya-Ping Zong(宗亚平). Chin. Phys. B, 2020, 29(12): 128201.
[2] Interactions between vacancies and prismatic Σ3 grain boundary in α-Al2O3: First principles study
Fei Wang(王飞), Wen-Sheng Lai(赖文生), Ru-Song Li(李如松), Bin He(何彬), Su-Fen Li(黎素芬). Chin. Phys. B, 2016, 25(6): 066804.
[3] Deposition mechanism of nano-structured single-layered C36 film on a diamond (100) crystal plane
Chen Ming-Jun, Liang Ying-Chun, Yuan Yi-Jie, Li Dan. Chin. Phys. B, 2008, 17(11): 4260-4267.
[2] Hou Jun-da, Zhang Tao, Tang Bao-yin, P. K. Chu, I. G. Brown. GUIDING OF PLASMA BY ELECTRIC FIELD AND MAGNETIC FIELD[J]. Chin. Phys., 2001, 10(5): 424 -428 .
[3] Su Guo-Lin, Ren Xue-Guang, Zhang Shu-Feng, Ning Chuan-Gang, Zhou Hui, Li Bin, Li Gui-Qin, Deng Jing-Kang. Experimental and calculated momentum densities for the complete valence orbitals of the antimicrobial agent diacetyl[J]. Chin. Phys., 2005, 14(10): 1966 -1973 .
[4] Zhang Jian-Min, Xu Ke-Wei. Evaluation of multiaxial stress in textured cubic films by x-ray diffraction[J]. Chin. Phys., 2005, 14(9): 1866 -1872 .
[5] Cai Da-Feng, Gu Yu-Qiu, Zheng Zhi-Jian, Zhou Wei-Min, Jiao Chun-Ye, Chen Hao, Wen Tian-Shu, Chunyu Shu-Tai. Effects of atomic number Z on the energy distribution of hot electrons generated by femtosecond laser interaction with metallic targets[J]. Chin. Phys., 2006, 15(10): 2363 -2367 .
[6] Xu Wen-Cheng, Gao Jie-Li, Liang Zhan-Qiang, Chen Qiao-Hong, Liu Song-Hao. Supercontinuum spectra generation in the single-mode optical fibre with concave dispersion profile[J]. Chin. Phys., 2006, 15(4): 715 -720 .
[7] Yu Jie, Wang Sen-Ming, Yuan Kai-Jun, Cong Shu-Lin. Photoionization of NaK molecule with a double-well potential in femtosecond pump--probe pulse laser fields[J]. Chin. Phys., 2006, 15(9): 1996 -2001 .
[8] Dai Chang-Jian, Li Shi-Ben. Saturation effects on Ba 6pnl (l=0,2) and 6pnk (|M|=0,1) autoionization spectra[J]. Chin. Phys., 2007, 16(2): 382 -391 .
[9] Liu Chong-Xin, Liu Ling, Su Yan-Chen. Experimental confirmation of a new reversed butterfly-shaped attractor[J]. Chin. Phys., 2007, 16(7): 1897 -1900 .
[10] Liu Yu-Fang, Zhang Wei, Shi De-Heng, Sun Jin-Feng. Quantum stereodynamics study for the reaction F + HD[J]. Chin. Phys. B, 2009, 18(10): 4264 -4273 .