Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(10): 100205    DOI: 10.1088/1674-1056/abaed6
General Prev   Next  

Modes decomposition in particle-in-cell software CEMPIC

Aiping Fang(方爱平)1,2,†, Shanshan Liang(梁闪闪)1, Yongdong Li(李永东)3, Hongguang Wang(王洪广)3,4, and Yue Wang(王玥)3,4
1 School of Physics, Xi’an Jiaotong University, Xi’an 710049, China
2 State Key Laboratory of Intense Pulsed Radiation Simulation and Effect (Northwest Institute of Nuclear Technology), Xi’an 710024, China
3 Key Laboratory for Physical Electronics and Devices of the Ministry of Education, School of Electronic and Information Engineering, Xi’an Jiaotong University, Xi’an 710049, China
4 Xian Moduo Technology Co., Ltd, Xi’an 710049, China
Abstract  

The numerical method of modes analysis and decomposition of the output signal in 3D electromagnetic particle-in-cell simulation is presented. By the method, multiple modes can be resolved at one time using a set of diagnostic data, the amplitudes and the phases of the specified modes can all be given separately. Based on the method, the output signals of one X-band tri-bend mode converter used for one high power microwave device, with ionization process in the device due to the strong normal electric field, are analyzed and decomposed.

Keywords:  particle-in-cell      mode decomposition      tri-bend mode converter      high power microwave device  
Received:  17 July 2020      Revised:  01 August 2020      Accepted manuscript online:  13 August 2020
PACS:  02.70.-c (Computational techniques; simulations)  
  52.65.-y (Plasma simulation)  
Corresponding Authors:  Corresponding author. E-mail: apfang@xjtu.edu.cn   
About author: 
†Corresponding author. E-mail: apfang@xjtu.edu.cn
* Project supported by the fund of the State Key Laboratory of Intense Pulsed Radiation Simulation and Effect (Grant No. SKLIPR1908).

Cite this article: 

Aiping Fang(方爱平)†, Shanshan Liang(梁闪闪), Yongdong Li(李永东), Hongguang Wang(王洪广), and Yue Wang(王玥) Modes decomposition in particle-in-cell software CEMPIC 2020 Chin. Phys. B 29 100205

Fig. 1.  

Schematic of the mode converter.

Fig. 2.  

Welding gaps on the mode converter.

TE mode TE11 TE11 TE21 TE21 TE01 TE31 TE31
Cut frequency/GHz 3.542 3.545 5.857 5.881 7.380 8.062 8.062
Pattern
Table 1.  

Patterns of the TE modes on the slice of the output waveguide.

TM mode TM01 TM11 TM11
Cut frequency/GHz 3.542 3.545 5.857
Pattern
Table 2.  

Patterns of the TM modes on the slice of the output waveguide.

Fig. 3.  

Contour of magnetic fields in the mode converter without breakdown.

Fig. 4.  

Contour of electric fields in the mode converter without breakdown.

TE Mode TE11 TE11 TE21 TE21 TE01 TE31 TE31
Forward 9.7 × 10–8 5.33 × 109 4.89 × 107 1.83 × 10–9 3.89 × 10–9} 318 × 10–9} 3.72 × 105
Backward 984 × 10–8 6.25 × 104 1.79 × 102 3.74 × 10–8 2.21 × 10–8 1.77 × 10–9} 9.85 × 103
Table 3.  

TE modes composition of the output signal without breakdown.

TM Mode TM01 TM11 TM11
Forward 1.09 × 107 7.50 × 107 5.49 × 10–9
Backward 8.54 × 104 5.09 × 104 1.60 × 10–8
Table 4.  

TM modes composition of the output signal without breakdown.

Fig. 5.  

Electrons distribution and contour of magnetic fields in the mode converter with breakdown, the red points represent the particles.

TE Mode TE11 TE11 TE21 TE21 TE01 TE31 TE31
Forward 1.27 × 102 520 × 109 5.30 × 107 2.01 × 102 2.89 6.59 1.65 × 105
Backward 8.11 × 10–5 6.24 × 104 2.03 × 102 2.52 × 10–3 1.69 × 10–4 4.16 × 10–4 945 × 103
Table 5.  

TE modes composition of the output signal with breakdown.

TM Mode TM01 TM11 TM11
Forward 6.48 × 106 6.76 × 107 2.0 × 101
Backward 3.27 × 104 5.36 × 104 3.97 × 10–4
Table 6.  

TM modes composition of the output signal with breakdown.

[1]
Zhang D Zhang J Zhong H H Jin Z X 2013 Phys. Plasmas 20 073111 DOI: 10.1063/1.4812697
[2]
Wang G Q Wang J G Zeng P Li S Wang D Y 2016 Phys. Plasmas 23 023104 DOI: 10.1063/1.4941098
[3]
Birdsall C K Langdon A B 2004 Plasma Physics via Computer Simulation New York McGraw Hill 351385
[4]
Barker R J Schamiloglu E 2001 High-Power Microwave Sources and Technologies New York IEEE Press 376437
[5]
Yee K S 1966 IEEE Trans. Antennas and Propagation 14 302 DOI: 10.1109/TAP.1966.1138693
[6]
Weiland T 1977 Electron. Commun. AEU 31 116 DOI: https://ui.adsabs.harvard.edu/abs/1977ArElU..31..116W/abstract
[7]
Weiland T 1996 Int. J. Numer. Model. 9 295 DOI: 10.1002/(ISSN)1099-1204
[8]
Verboncoeur J P 2005 Plasma Phys. Control. Fusion 47 A231 DOI: 10.1088/0741-3335/47/5A/017
[9]
Meierbachtol C S Greenwood AD Verboncoeur J P Shanker B 2015 IEEE Trans. Plasma Sci. 43 3778 DOI: 10.1109/TPS.2015.2487522
[10]
Tarakanov V P 1998 User’s Manual for Code KARAT Springfield Berkeley Research Associates 7 10
[11]
Goplen B Ludeking L Smith D Warren G 1995 Comput. Phys. Comm. 87 54 DOI: 10.1016/0010-4655(95)00010-D
[12]
Verboncoeur J P Langdon A B Gladd N T 1995 Comput. Phys. Comm. 87 199 DOI: 10.1016/0010-4655(94)00173-Y
[13]
Wang J G Zhang D H Liu C L Li Y D Wang Y Wang H G Qiao H L Li X Z 2009 Phys. Plasmas 16 033108 DOI: 10.1063/1.3091931
[14]
Wang J G Chen Z G Wang Y Zhang D H Liu C L Li Y D Wang H G Qiao H L Fu M Y Yuan Y 2010 Phys. Plasmas 17 073107 DOI: 10.1063/1.3454766
[15]
Li X Z Wang J G Xiao R Z Wang G Q Zhang L J Zhang Y C Ye H 2013 Phys. Plasmas 20 083105 DOI: 10.1063/1.4817738
[16]
Zhang D Zhang J Zhong H H Jin Z X Ju J C 2014 Phys. Plasmas 21 093102 DOI: 10.1063/1.4894480
[17]
Wang Y Li Y D Jiang M Wang H G 2019 Vacuum Electronics 6 12 in Chinese
[18]
Wang Y Wang J G Chen Z G Cheng G X Wang P 2016 Comput. Phys. Comm. 205 1 DOI: 10.1016/j.cpc.2016.03.007
[19]
Zagorodnov I A Schuhmann R Weiland T 2007 J. Comput. Phys. 225 1493 DOI: 10.1016/j.jcp.2007.02.002
[20]
[21]
[22]
Xiao R Z Deng Y Q Wang Y Song Z M Li J W Sun J Chen C H 2015 App. Phys. Lett. 107 133502 DOI: 10.1063/1.4932065
[1] Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
Shijie Zhang(张世杰), Weimin Zhou(周维民), Yan Yin(银燕), Debin Zou(邹德滨), Na Zhao(赵娜), Duan Xie(谢端), and Hongbin Zhuo(卓红斌). Chin. Phys. B, 2023, 32(3): 035201.
[2] Ion-focused propagation of a relativistic electron beam in the self-generated plasma in atmosphere
Jian-Hong Hao(郝建红), Bi-Xi Xue(薛碧曦), Qiang Zhao(赵强), Fang Zhang(张芳), Jie-Qing Fan(范杰清), and Zhi-Wei Dong(董志伟). Chin. Phys. B, 2022, 31(6): 064101.
[3] Electron acceleration during magnetic islands coalescence and division process in a guide field reconnection
Shengxing Han(韩圣星), Huanyu Wang(王焕宇), and Xinliang Gao(高新亮). Chin. Phys. B, 2022, 31(2): 025202.
[4] Discharge characteristic of very high frequency capacitively coupled argon plasma
Gui-Qin Yin(殷桂琴), Jing-Jing Wang(王兢婧), Shan-Shan Gao(高闪闪), Yong-Bo Jiang(姜永博), and Qiang-Hua Yuan(袁强华). Chin. Phys. B, 2021, 30(9): 095204.
[5] Particle-in-cell simulation of ion-acoustic solitary waves in a bounded plasma
Lin Wei(位琳), Bo Liu(刘博), Fang-Ping Wang(王芳平), Heng Zhang(张恒), and Wen-Shan Duan(段文山). Chin. Phys. B, 2021, 30(3): 035201.
[6] Constructing reduced model for complex physical systems via interpolation and neural networks
Xuefang Lai(赖学方), Xiaolong Wang(王晓龙, and Yufeng Nie(聂玉峰). Chin. Phys. B, 2021, 30(3): 030204.
[7] Physical properties of relativistic electron beam during long-range propagation in space plasma environment
Bi-Xi Xue(薛碧曦), Jian-Hong Hao(郝建红), Qiang Zhao(赵强), Fang Zhang(张芳), Jie-Qing Fan(范杰清), and Zhi-Wei Dong(董志伟). Chin. Phys. B, 2021, 30(10): 104103.
[8] Propagation dynamics of relativistic electromagnetic solitary wave as well as modulational instability in plasmas
Rong-An Tang(唐荣安), Tiao-Fang Liu(刘调芳), Xue-Ren Hong(洪学仁), Ji-Ming Gao(高吉明), Rui-Jin Cheng(程瑞锦), You-Lian Zheng(郑有莲), and Ju-Kui Xue(薛具奎). Chin. Phys. B, 2021, 30(1): 015201.
[9] Spontaneous growth of the reconnection electric field during magnetic reconnection with a guide field: A theoretical model and particle-in-cell simulations
Kai Huang(黄楷), Quan-Ming Lu(陆全明), Rong-Sheng Wang(王荣生), Shui Wang(王水). Chin. Phys. B, 2020, 29(7): 075202.
[10] Hybrid-PIC/PIC simulations on ion extraction by electric field in laser-induced plasma
Xiao-Yong Lu(卢肖勇), Cheng Yuan(袁程), Xiao-Zhang Zhang(张小章), Zhi-Zhong Zhang(张志忠). Chin. Phys. B, 2020, 29(4): 045201.
[11] Numerical simulation on modulational instability of ion-acoustic waves in plasma
Yi-Rong Ma(马艺荣), Lie-Juan Li(李烈娟), Wen-Shan Duan(段文山). Chin. Phys. B, 2019, 28(2): 025201.
[12] Adaptive optimization on ultrasonic transmission tomography-based temperature image for biomedical treatment
Yun-Hao Zhu(朱昀浩), Jie Yuan(袁杰), Stephen Z Pinter, Oliver D Kripfgans, Qian Cheng(程茜), Xue-Ding Wang(王学鼎), Chao Tao(陶超), Xiao-Jun Liu(刘晓峻), Guan Xu(徐冠), Paul L Carson. Chin. Phys. B, 2017, 26(6): 064301.
[13] Acceleration and radiation of externally injected electrons in laser plasma wakefield driven by a Laguerre-Gaussian pulse
Zhong-Chen Shen(沈众辰), Min Chen(陈民), Guo-Bo Zhang(张国博), Ji Luo(罗辑), Su-Ming Weng(翁苏明), Xiao-Hui Yuan(远晓辉), Feng Liu(刘峰), Zheng-Ming Sheng(盛政明). Chin. Phys. B, 2017, 26(11): 115204.
[14] Dynamic study of compressed electron layer driven by linearly polarized laser
Feng-chao Wang(王凤超). Chin. Phys. B, 2016, 25(5): 054102.
[15] Denoising of chaotic signal using independent component analysis and empirical mode decomposition with circulate translating
Wen-Bo Wang(王文波), Xiao-Dong Zhang(张晓东), Yuchan Chang(常毓禅), Xiang-Li Wang(汪祥莉), Zhao Wang(王钊), Xi Chen(陈希), Lei Zheng(郑雷). Chin. Phys. B, 2016, 25(1): 010202.
No Suggested Reading articles found!