Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(6): 067201    DOI: 10.1088/1674-1056/ab84cd

Significant role of nanoscale Bi-rich phase in optimizing thermoelectric performance of Mg3Sb2

Yang Wang(王杨)1, Xin Zhang(张忻)1, Yan-Qin Liu(刘燕琴)1, Jiu-Xing Zhang(张久兴)2, Ming Yue(岳明)1
1 Key Laboratory of Advanced Functional Materials, Ministry of Education, College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China;
2 School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China
Abstract  Mg3Sb1.5Bi0.5-based alloys have received much attention, and current reports on this system mainly focus on the modulation of doping. However, there lacks the explanation for the choice of Mg3Sb1.5Bi0.5 as matrix. Here in this work, the thermoelectric properties of Mg3Sb2-xBix (0.4 ≤ x ≤ 0.55) compounds are systematically investigated by using the first principles calculation combined with experiment. The calculated results show that the band gap decreases after Bi has been substituted for Sb site, which makes the thermal activation easier. The maximum figure of merit (ZT) is 0.27 at 773 K, which is attributed to the ultra-low thermal conductivity 0.53 W·m-1·K-1 for x=0.5. The large mass difference between Bi and Sb atoms, the lattice distortion induced by substituting Bi for Sb, and the nanoscale Bi-rich particles distributed on the matrix are responsible for the reduction of thermal conductivity. The introduction of Bi into Mg3Sb2-based materials plays a vital role in regulating the transport performance of thermoelectric materials.
Keywords:  first principles calculations      nanoscale Bi-rich phase      Mg3Sb2      thermoelectric performance  
Received:  20 December 2019      Revised:  23 March 2020      Published:  05 June 2020
PACS:  72.20.Pa (Thermoelectric and thermomagnetic effects)  
  73.50.Lw (Thermoelectric effects)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51371010, 51572066, and 50801002), the Beijing Municipal Natural Science Foundation, China (Grant No. 2112007), the Fundamental Research Funds for the Central Universities (Grant No. PXM2019-014204-500032), and the Science Fund from the Advanced Space Propulsion Laboratory of BICE and Beijing Engineering Research Center of Efficient and Green Aerospace Propulsion Technology, China (Grant No. LabASP-2018-09).
Corresponding Authors:  Xin Zhang     E-mail:

Cite this article: 

Yang Wang(王杨), Xin Zhang(张忻), Yan-Qin Liu(刘燕琴), Jiu-Xing Zhang(张久兴), Ming Yue(岳明) Significant role of nanoscale Bi-rich phase in optimizing thermoelectric performance of Mg3Sb2 2020 Chin. Phys. B 29 067201

[1] Chen X X, Wu H J, Cui J, Xiao Y, Zhang Y, He J Q, Chen Y, Cao J, Cai W, Pennycook S J, Liu Z H, Zhao L D and Sui J H 2018 Nano Energy 52 246
[2] Condron C L, Kauzlarich S M, Gascoin F and Snyder G J 2006 J. Solid State Chem. 179 2252
[3] Shi X M, Wang X, Li W and Pei Y Z 2018 Small Methods 2 18000022
[4] Liu W S, Hu J Z, Zhang S M, Deng M J, Han C G and Liu Y 2017 Mater. Today Phys. 1 50
[5] Champier D 2017 Energy Convers. Manag. 140 167
[6] Snyder G J and Toberer E S 2008 Nat. Mater. 7 105
[7] Shi X, Kong H, Li C P, Uher C, Yang J, Salvador J R, Wang H, Chen L and Zhang W 2008 Appl. Phys. Lett. 92 182101
[8] Zhao W Y, Wei P, Zhang Q J, Dong C L, Liu L S and Tang X F 2009 J. Am. Chem. Soc. 131 3713
[9] Beekman M and Nolas G S 2008 J. Mater. Chem. 18 842
[10] Kim J H, Okamoto N L, Kishida K, Tanaka K and Inui H 2006 Acta Mater. 54 2057
[11] Madsen G K H, Schwarz K, Blaha P and Singh D 2003 Phys. Rev. B 68 125212
[12] Bux S K, Zevalkink A, Janka O, Uhl D, Kauzlarich S, Snyder J G and Fleurial J P 2014 J. Mater. Chem. 2 215
[13] Kauzlarich S M, Brown S R and Snyder G J 2007 Dalton Trans. 21 2099
[14] Toberer E S, May A F and Snyder G J 2010 Chem. Mater. 22 624
[15] Tamaki H, Sato H K and Kanno T 2016 Adv. Mater. 28 10182
[16] Zhang J W, Song L R, Pedersen S H, Yin H, Hung L T and Iversen B B 2017 Nat. Commun. 8 13901
[17] Imasato K, Ohno S, Kang S D and Snyder G J 2018 APL Mater. 6 016106
[18] Kanno T, Tamaki H, Sato H K, Kang S D, Ohno S, Imasato K, Kuo J J, Snyder G J and Miyazaki Y 2018 Appl. Phys. Lett. 112 033903
[19] Zhang J W, Song L R, Mamakhel A, Jorgensen M R V and Iversen B B 2017 Chem. Mater. 29 5371
[20] Pei Y Z, Shi X Y, Lalonde A D, Wang H, Chen L D and Snyder G J 2011 Nature 473 66
[21] Liu W, Tan X J, Yin K, Liu H J, Tang X F, Shi J, Zhang Q J and Uher C 2012 Phys. Rev. Lett. 108 166601
[22] Pei Y Z, Lalonde A D, Wang H and Snyder G J 2012 Energy Environ. Sci. 5 7963
[23] Imasato K, Kang S D, Ohno S and Snyder G J 2018 Mater. Horiz. 5 59
[24] Mao J, Wu Y X, Song S W, Zhu Q, Shuai J, Liu Z H, Pei Y Z and Ren Z F 2017 ACS Energy Lett. 2 2245
[25] Wang H, Chen J, Lu T Q, Zhu K J, Li S, Liu J and Zhao H Z 2018 Chin. Phys. B. 27 047212
[26] Shuai J, Wang Y M, Kim H S, Liu Z H, Sun J Y, Chen S, Sui J H and Ren Z F 2015 Acta Materialia. 93 187
[27] Song L R, Zhang J W and Iversen B B 2017 J. Mater. Chem. A 5 4932
[28] Bhardwaj A and Misra D K 2014 RSC Adv. 4 34552
[29] Bhardwaj A, Rajput A, Shukla A K, Pulikkotil J J, Srivastava A K, Dhar A, Gupta G, Auluck S, Misra D K and Budhani R C 2013 RSC Adv. 3 8504
[30] Shi X M, Zhao T T, Zhang X Y, Sun C, Chen Z W, Lin S Q, Li W, Gu H and Pei Y Z 2019 Adv. Mater. 31 1903387
[31] Imasato K, Wood M, Kuo J J and Snyder G J 2018 J. Mater. Chem. A 6 19941
[1] A high-pressure study of Cr3C2 by XRD and DFT
Lun Xiong(熊伦), Qiang Li(李强), Cheng-Fu Yang(杨成福), Qing-Shuang Xie(谢清爽), Jun-Ran Zhang(张俊然). Chin. Phys. B, 2020, 29(8): 086401.
[2] Enhanced thermoelectric performance in p-type Mg3Sb2 via lithium doping
Hao Wang(王浩), Jin Chen(陈进), Tianqi Lu(陆天奇), Kunjie Zhu(朱坤杰), Shan Li(李珊), Jun Liu(刘军), Huaizhou Zhao(赵怀周). Chin. Phys. B, 2018, 27(4): 047212.
[3] Theoretical calculations of structural, electronic, and elastic properties of CdSe1-xTex: A first principles study
M Shakil, Muhammad Zafar, Shabbir Ahmed, Muhammad Raza-ur-rehman Hashmi, M A Choudhary, T Iqbal. Chin. Phys. B, 2016, 25(7): 076104.
[4] Mobility enhancement of strained GaSb p-channel metal—oxide—semiconductor field-effect transistorswith biaxial compressive strain
Yan-Wen Chen(陈燕文), Zhen Tan(谭桢), Lian-Feng Zhao(赵连锋), Jing Wang(王敬), Yi-Zhou Liu(刘易周),Chen Si(司晨), Fang Yuan(袁方), Wen-Hui Duan(段文晖), Jun Xu(许军). Chin. Phys. B, 2016, 25(3): 038504.
[5] Theoretical investigation of sulfur defects on structural, electronic, and elastic properties of ZnSe semiconductor
Muhammad Zafar, Shabbir Ahmed, M. Shakil, M. A. Choudhary, K. Mahmood. Chin. Phys. B, 2015, 24(7): 076106.
[6] Composition and temperature dependences of site occupation for Al, Cr, W, and Nb in MoSi2
Li Xiao-Ping, Sun Shun-Ping, Yu Yun, Wang Hong-Jin, Jiang Yong, Yi Dan-Qing. Chin. Phys. B, 2015, 24(12): 120502.
[7] First-principles calculations of structural, electronic, and thermodynamic properties of ZnO1-xSx alloys
Muhammad Zafar, Shabbir Ahmed, M. Shakil, M. A. Choudhary. Chin. Phys. B, 2014, 23(10): 106108.
[8] MgO-decorated carbon nanotubes for CO2 adsorption: first principles calculations
Zhu Feng, Dong Shan, Cheng Gang. Chin. Phys. B, 2011, 20(7): 077103.
No Suggested Reading articles found!