Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(10): 107303    DOI: 10.1088/1674-1056/ab3e68
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Observation of hopping transitions for delocalized electrons by temperature-dependent conductance in siliconjunctionless nanowire transistors

Yang-Yan Guo(郭仰岩)1,2, Wei-Hua Han(韩伟华)1,2, Xiao-Song Zhao(赵晓松)1,2, Ya-Mei Dou(窦亚梅)1,2, Xiao-Di Zhang(张晓迪)1,2, Xin-Yu Wu(吴歆宇)1,2, Fu-Hua Yang(杨富华)1,2,3
1 Engineering Research Center for Semiconductor Integrated Technology & Beijing Engineering Center of Semiconductor Micro-Nano Integrated Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;
2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China;
3 State Key Laboratory for Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China
Abstract  

We demonstrate transitions of hopping behaviors for delocalized electrons through the discrete dopant-induced quantum dots in n-doped silicon junctionless nanowire transistors by the temperature-dependent conductance characteristics. There are two obvious transition platforms within the critical temperature regimes for the experimental conductance data, which are extracted from the unified transfer characteristics for different temperatures at the gate voltage positions of the initial transconductance gm peak in Vg1 and valley in Vg2. The crossover temperatures of the electron hopping behaviors are analytically determined by the temperature-dependent conductance at the gate voltages Vg1 and Vg2. This finding provides essential evidence for the hopping electron behaviors under the influence of thermal activation and long-range Coulomb interaction.

Keywords:  junctionless nanowire transistors      temperature-dependent conductance      variable range hopping      localization length  
Received:  12 June 2019      Revised:  14 August 2019      Published:  05 October 2019
PACS:  73.63.Kv (Quantum dots)  
  72.20.Ee (Mobility edges; hopping transport)  
  71.23.An (Theories and models; localized states)  
  85.30.Tv (Field effect devices)  
Fund: 

Project supported by the National Key R&D Program of China (Grant No. 2016YFA0200503) and the National Natural Science Foundation of China (Grant No. 61327813).

Corresponding Authors:  Wei-Hua Han     E-mail:  weihua@semi.ac.cn

Cite this article: 

Yang-Yan Guo(郭仰岩), Wei-Hua Han(韩伟华), Xiao-Song Zhao(赵晓松), Ya-Mei Dou(窦亚梅), Xiao-Di Zhang(张晓迪), Xin-Yu Wu(吴歆宇), Fu-Hua Yang(杨富华) Observation of hopping transitions for delocalized electrons by temperature-dependent conductance in siliconjunctionless nanowire transistors 2019 Chin. Phys. B 28 107303

[1] Samanta A, Muruganathan M, Hori M, Ono Y, Mizuta H, Tabe M and Moraru D 2017 Appl. Phys. Lett. 110 093107
[2] Jehl X, Niquet Y M and Sanquer M 2016 J. Physics.: Condens. Matter 28 103001
[3] Tabe M, Moraru D, Ligowski M, Anwar M, Jablonski R, Ono Y and Mizuno T 2010 Phys. Rev. Lett. 105 016803
[4] Pierre M, Wacquez R, Jehl X, Sanquer M, Vinet M and Cueto O 2010 Nat. Nanotechnol. 5 133
[5] Moraru D, Udhiarto A, Anwar M, Nowak R, Jablonski R, Hamid E, Tarido J C, Mizuno T and Tabe M 2011 Nanoscale Research Letters 6 479
[6] Dagesyan S A, Shorokhov V V, Presnov D E, Soldatov E S, Trifonov A S and Krupenin V A 2017 Nanotechnol. 28 225304
[7] Uddin W, Georgiev Y M, Maity S and Das S 2017 J. Phys. D: Appl. Phys. 50 365104
[8] Enrico Prati M H, Filippo Guagliardo, Giorgio Ferrari and Takahiro Shinada 2012 Nat. Nanotechnol. 7 443
[9] Hamid E, Moraru D, Tarido J C, Miki S, Mizuno T and Tabe M 2010 Appl. Phys. Lett. 97 262101
[10] Hori M, Shinada T, Ono Y, Komatsubara A, Kumagai K, Tanii T, Endoh T and Ohdomari I 2011 Appl. Phys. Lett. 99 062103
[11] Sellier H, Lansbergen G P, Caro J, Rogge S, Collaert N, Ferain I, Jurczak M and Biesemans S 2006 Phys. Rev. Lett. 97 206805
[12] Tabe M, Moraru D, Ligowski M, Anwar M, Yokoi K, Jablonski R and Mizuno T 2010 Thin Solid Films 518 S38
[13] Wang H, Han W, Ma L, Li X, Hong W and Yang F 2014 Appl. Phys. Lett. 104 133509
[14] Su L N, Lv L, Li X X, Qin H and Gu X F 2015 Chin. Phys. Lett. 32 047301
[15] Rueß F J, Micolich A P, Pok W, Goh K E J, Hamilton A R and Simmons M Y 2008 Appl. Phys. Lett. 92 052101
[16] Pichon L, Jacques E, Rogel R, Salaun A C and Demami F 2013 Semicond. Sci. Technol. 28 025002
[17] Colinge J P, Lee C W, Afzalian A, Akhavan N D, Yan R, Ferain I, Razavi P, O'Neill B, Blake A, White M, Kelleher A M, McCarthy B and Murphy R 2010 Nat. Nanotechnol. 5 225
[18] Ma L, Han W, Wang H, Hong W, Lyu Q, Yang X and Yang F 2015 J. Appl. Phys. 117 034505
[19] Wang H, Han W, Li X, Zhang Y and Yang F 2014 J. Appl. Phys. 116 124505
[20] Barrett C, Lederer D, Redmond G, Xiong W, Colinge J P and Quinn A J 2010 Solid-State Electron. 54 1273
[21] Shlimak I 2015 Is Hopping A Science (Singapore: World Scientific) p. 25
[22] M F Kaveh N F M 1983 Philos. Mag. B 47 577
[23] Boris I and Shklovskii A L E 1984 Electronic Properties of Doped Semiconductors (Berlin: Springer-Verlag) p. 191
[24] Efros A L and Shklovskii B I 1975 Journal of Physics C: Solid State Physics 8 L49
[25] Qiu H, Xu T, Wang Z, Ren W, Nan H, Ni Z, Chen Q, Yuan S, Miao F, Song F, Long G, Shi Y, Sun L, Wang J and Wang X 2013 Nat. Commun. 4 2642
[26] Yu D, Wang C, Wehrenberg B L and Guyot-Sionnest P 2004 Phys. Rev. Lett. 92 216802
[27] Ma L H, Han W H, Wang H, Yang X and Yang A F 2015 IEEE Trans. Elec. Dev 36 941
[28] Je M, Han S, Kim I and Shin H 2000 Solid-State Electron. 40 2207
[29] Zhao X H, Guo Y Y, Dou Y M and Yang F H 2018 Chin. Phys. B 27 097310
[30] Li X, Han W, Wang H, Ma L, Zhang Y, Du Y and Yang F 2013 Appl. Phys. Lett. 102 223507
[31] Wang W, Xu G, Chowdhury M D H, Wang H, Um J K, Ji Z, Gao N, Zong Z, Bi C, Lu C, Lu N, Banerjee W, Feng J, Li L, Kadashchuk A, Jang J and Liu M 2018 Phys. Rev. B 98 245308
[32] Mott N F 1969 Philos. Mag. 19 835
[33] Zhang Y, Dai O, Levy M and Sarachik M P 1990 Phys. Rev. Lett. 64 2687
[1] Electronic mobility in the high-carrier-density limit ofion gel gated IDTBT thin film transistors
Bao Bei, Shao Xian-Yi, Tan Lu, Wang Wen-He, Wu Yue-Shen, Wen Li-Bin, Zhao Jia-Qing, Tang Wei, Zhang Wei-Min, Guo Xiao-Jun, Wang Shun, Liu Ying. Chin. Phys. B, 2015, 24(9): 098103.
[2] Charge trapping in surface accumulation layer of heavily doped junctionless nanowire transistors
Ma Liu-Hong, Han Wei-Hua, Wang Hao, Yang Xiang, Yang Fu-Hua. Chin. Phys. B, 2015, 24(12): 128101.
[3] Quantum transport characteristics in single and multiple N-channel junctionless nanowire transistors at low temperatures
Wang Hao, Han Wei-Hua, Ma Liu-Hong, Li Xiao-Ming, Yang Fu-Hua. Chin. Phys. B, 2014, 23(8): 088107.
[4] Ferromagnetism, variable range hopping and anomalous Hall effect in epitaxial Co:ZnO thin film
Bai Hong-Liang, He Shu-Min, Xu Tong-Shuai, Liu Guo-Lei, Yan Shi-Shen, Zhu Da-Peng, Dai Zheng-Kun, Yang Feng-Fan, Dai You-Yong, Chen Yan-Xue, Mei Liang-Mo. Chin. Phys. B, 2012, 21(10): 107201.
[5] Universal spin-dependent variable range hopping in wide-band-gap oxide ferromagnetic semiconductors
Dai You-Yong, Yan Shi-Shen, Tian Yu-Feng, Chen Yan-Xue, Liu Guo-Lei, Mei Liang-Mo. Chin. Phys. B, 2010, 19(3): 037203.
[6] Doping dependent metal to insulator transition in the (Bi,Pb)-2212 system: The evolution of structural and electronic properties with europium substitution
Shabna Razia, Sarun Pallian, Murikoli, Vinu Surendran, Syamaprasad Upendran. Chin. Phys. B, 2009, 18(9): 4000-4006.
No Suggested Reading articles found!