Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(9): 094213    DOI: 10.1088/1674-1056/ab37fb
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Diode-pumped Kerr-lens mode-locked Ti: sapphire laser with broad wavelength tunability

Han Liu(刘寒)1, Geyang Wang(王阁阳)1, Ke Yang(杨科)1, Renzhu Kang(康仁铸)1, Wenlong Tian(田文龙)1, Dacheng Zhang(张大成)1, Jiangfeng Zhu(朱江峰)1, Hainian Han(韩海年)2, Zhiyi Wei(魏志义)2
1 School of Physics and Optoelectronic Engineering, Xidian University, Xi'an 710071, China;
2 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  

We report a direct blue-diode-pumped wavelength tunable Kerr-lens mode-locked Ti:sapphire laser. Central wavelength tunability as broad as 89 nm (736-825 nm) is achieved by adjusting the insertion of the prism. Pulses as short as 17 fs are generated at a central wavelength of 736 nm with an average output power of 31 mW. The maximum output power is 46.8 mW at a central wavelength of 797 nm with a pulse duration of 46 fs.

Keywords:  blue-diode pump      Ti:sapphire      wavelength tunable      Kerr-lens mode-locked laser  
Received:  23 May 2019      Revised:  02 July 2019      Published:  05 September 2019
PACS:  42.55.Rz (Doped-insulator lasers and other solid state lasers)  
  42.55.Xi (Diode-pumped lasers)  
  42.60.Fc (Modulation, tuning, and mode locking)  
  42.65.Hw (Phase conjugation; photorefractive and Kerr effects)  
Fund: 

Project supported by the National Key R&D Program of China (Grant No. 2016YFB0402105).

Corresponding Authors:  Jiangfeng Zhu, Zhiyi Wei     E-mail:  jfzhu@xidian.edu.cn;zywei@iphy.ac.cn

Cite this article: 

Han Liu(刘寒), Geyang Wang(王阁阳), Ke Yang(杨科), Renzhu Kang(康仁铸), Wenlong Tian(田文龙), Dacheng Zhang(张大成), Jiangfeng Zhu(朱江峰), Hainian Han(韩海年), Zhiyi Wei(魏志义) Diode-pumped Kerr-lens mode-locked Ti: sapphire laser with broad wavelength tunability 2019 Chin. Phys. B 28 094213

[1] Zewail A H 2000 J. Phys. Chem. A. 104 5660
[2] Hoover E E and Squier J A 2013 Nat. Photon. 7 93
[3] Maatz G, Heisterkamp A, Lubatschowski H, Barcikowski S, Fallnich C, Welling H and Ertmer W 2000 J. Opt. A:Pure Appl. Opt. 2 59
[4] Furusawa K, Takahashi K, Kumagai H, Midoikawa K and Obara M 1999 Appl. Phys. A 69 359
[5] Moulton P F 1982 Opt. News 8 9
[6] Moulton P F 1986 J. Opt. Soc. Am. B 3 125
[7] Spence D E, Kean P N and Sibbett W 1991 Opt. Lett. 16 42
[8] Huang C P, Asaki M T, Backus S, Murnane M, Kapteyn H C and Nathel H 1992 Opt. Lett. 17 1289
[9] Ell R, Morgner U, Kärtner F X, Fujimoto J G, Ippen E P, Scheuer V, Angelow G, Tschudi T, Lederer M J, Boiko A and Davies B L 2001 Opt. Lett. 26 373
[10] Samanta G K, Kumar S C, Devi K and Zadeh M E 2012 Opt. Laser Eng. 50 215
[11] Nakamura S, Senoh M, Nagahama S I, Iwasa N, Matsushita T and Mukai T 2000 Appl. Phys. Lett. 76 22
[12] Roth P W, Maclean A J, Burns D and Kemp A J 2009 Opt. Lett. 34 3334
[13] Roth P W, Burns D and Kemp A J 2012 Opt. Express 20 20629
[14] Durfee C G, Storz T, Garlick J, Hill S, Squier J A, Kirchner M, Taft G, Shea K, Kapteyn H, Murnane M and Backus S 2012 Opt. Express 20 13677
[15] Sawai S, Hosaka A, Kawauchi H, Hirosawa K and Kannari F 2014 Appl. Phys. Express 7 022702
[16] Gürel K, Wittwer V J, Hoffmann M, Saraceno C J, Hakobyan S, Resan B, Rohrbacher A, Weingarten K, Schilt and Südmeyer T 2015 Opt. Express 23 30043
[17] Gürel K, Wittwer V J, Hakobyan S, Schilt S and Südmeyer T 2017 Opt. Lett. 42 1035
[18] Rohrbacher A, Olarte O E, Villamaina V, Alvarez P L and Resan B 2017 Opt. Express 25 10677
[19] Kopylov D A, Esaulkov M N, Kuritsyn I I, Mavritskiy A O, Perminov B E, Konyashchenko A V, Murzina T V and Maydykovskiy A I 2018 Laser Phys. Lett. 15 045001
[20] Coyle J C E, Kemp A J, Hopkins J M and Lagatsky A A 2018 Opt. Express 26 6826
[21] Sugiyama N, Tanaka H and Kannari F 2018 Jpn. J. Appl. Phys. 57 052701
[22] Sawada R, Tanaka H, Sugiyama N and Kannari F 2017 Appl. Opt. 56 1654
[23] Naumov S, Sorokin E and Sorokina I T 2004 Opt. Lett. 29 1276
[1] Wavefront evolution of the signal beam in Ti: sapphire chirped pulse amplifier
Zhen Guo(郭震), Lianghong Yu(於亮红), Wenqi Li(李文启), Zebiao Gan(甘泽彪), Xiaoyan Liang(梁晓燕). Chin. Phys. B, 2019, 28(1): 014203.
[2] Spatial chirp in Ti:sapphire multipass amplifier
Wenkai Li(黎文开), Jun Lu(陆俊), Yanyan Li(李妍妍), Xiaoyang Guo(郭晓杨), Fenxiang Wu(吴分翔), Linpeng Yu(於林鹏), Pengfei Wang(王朋飞), Yi Xu(许毅), Yuxin Leng(冷雨欣). Chin. Phys. B, 2017, 26(3): 034206.
[3] A compact graphene Q-switched erbium-doped fiber laser using optical circulator and tunable fiber Bragg grating
Li He-Ping, Xia Han-Ding, Wang Ze-Gao, Zhang Xiao-Xia, Chen Yuan-Fu, Zhang Shang-Jian, Tang Xiong-Gui, Liu Yong. Chin. Phys. B, 2014, 23(2): 024209.
[4] Operation of Kerr-lens mode-locked Ti:sapphire laser in thenon-soliton regime
Liu Hua-Gang, Hu Ming-Lie, Song You-Jian, Li Yan-Feng, Chai Lu, Wang Ching-Yue. Chin. Phys. B, 2010, 19(1): 014215.
[5] An all-solid-state high power quasi-continuous-wave tunable dual-wavelength Ti:sapphire laser system using birefringence filter
Ding Xin, Ma Hong-Mei, Zou Lei, Zou Yue, Wen Wu-Qi, Wang Peng, Yao Jian-Quan. Chin. Phys. B, 2007, 16(7): 1991-1995.
[6] Analysis of tunable picosecond pulse generation from a distributed feedback Ti:sapphire laser
Hong Zhi, Yao Xiao-Ke. Chin. Phys. B, 2004, 13(9): 1454-1459.
[7] PUMP-TUNING KTP OPTICAL PARAMETRIC OSCILLATOR WITH CONTINUOUS OUTPUT WAVELENGTH PUMPED BY A PULSED TUNABLE Ti:SAPPHIRE LASER
Ding Xin, Yao Jian-quan, Yu Yi-zhong, Yu Xuan-yi, Xu Jing-jun, Zhang Guang-yin. Chin. Phys. B, 2001, 10(8): 725-729.
No Suggested Reading articles found!