Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(3): 034201    DOI: 10.1088/1674-1056/28/3/034201
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Analysis of optical properties of bio-smoke materials in the 0.25-14 μm band

Xinying Zhao(赵欣颖)1,2, Yihua Hu(胡以华)1,2, Youlin Gu(顾有林)1,2, Xi Chen(陈曦)1,2, Xinyu Wang(王新宇)1,2, Peng Wang(王鹏)3, Xiao Dong(董骁)1,2
1 State Key Laboratory of Pulsed Power Laser Technology, National University of Defense Technology, Hefei 230037, China;
2 Anhui Province Key Laboratory of Electronic Restriction, National University of Defense Technology, Hefei 230037, China;
3 Key Laboratory of Ion Beam Bioengineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230001, China
Abstract  

At present, research into optical properties of bio-smoke materials mostly concentrates on single band or single germplasm. Herein, we measured the spectral reflectance of three eukaryotic bio-smoke materials and three prokaryotic bio-smoke materials in the waveband from 0.25 μm to 14 μm. Based on the Kramers-Kroning algorithm, the complex refractive index m(λ) was calculated and the Fourier-transform infrared (FTIR) spectra of materials were analyzed. The results show that n(λ) of bio-smoke materials varies between 1.1-2, and n(λ) values in the visible light to near-infrared wavebands are significantly larger than those in other wavebands. The k(λ) of bio-smoke materials varies between 0-0.4. At 6-6.5 μm, k(λ) of prokaryotic materials is 3 times that of eukaryotic materials, which is caused by C=O stretching vibration of amide I and C-N stretching vibration of amide Ⅱ in proteins. At 2.5-3 μm and 9.75 μm, k(λ) values of eukaryotic bio-smoke materials are nearly 2 times that of prokaryotic ones. The absorption peak at 2.5-3 μm is mainly triggered by C-H stretching vibration in lipid and O-H stretching vibration in bound water. The absorption peak at 9.75 μm is mainly caused by symmetric stretching vibration of PO2- in nucleic acids.

Keywords:  bio-smoke materials      complex refractive index      eukaryotic      prokaryotic  
Received:  14 December 2018      Revised:  09 January 2019      Published:  05 March 2019
PACS:  28.41.Qb (Structural and shielding materials)  
  42.50.Wk (Mechanical effects of light on material media, microstructures and particles)  
  42.70.-a (Optical materials)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 61271353 and 60908033) and the Natural Science Foundation of Anhui Province, China (Grant No. 1408085MKL47).

Corresponding Authors:  Yihua Hu     E-mail:  skl_hyh@163.com

Cite this article: 

Xinying Zhao(赵欣颖), Yihua Hu(胡以华), Youlin Gu(顾有林), Xi Chen(陈曦), Xinyu Wang(王新宇), Peng Wang(王鹏), Xiao Dong(董骁) Analysis of optical properties of bio-smoke materials in the 0.25-14 μm band 2019 Chin. Phys. B 28 034201

[1] Ariya P A and Amyot M 2004 Atmos. Environ 38 1231
[2] Janine F N, Christopher J K and Bettina W 2016 Atmos. Res. 182 346
[3] Huffman J A 2012 Atmos. Chem. Phys. 12 11997
[4] Pöhlker C, Huffman J A and Pöschl U 2012 Atmos. Meas. Tech. 5 37
[5] Bowers R, Clements N, Emerson J B, Wiedinmyer C, Hannigan M P and Fierer N 2013 Environ. Sci. Technol. 47 12097
[6] Cao C, Jiang W, Wang B, Fang J, Lang J, Tian G, Jiang J and Zhu T F 2014 Environ. Sci. Technol. 48 1499
[7] Spänkuch D, Döhler W and Güldner J 2000 J. Geophys. Res. 105 17341
[8] Guyon P 2004 Atmos. Environ 38 1039
[9] Shu X M, Fang J, Shao Q, Yuan H Y and Fan W C 2006 Chin. Phys. Lett. 23 385
[10] Tuminello P S, Arakawa E T, Khare B N, Wrobel J M, Querry M R and Milham M E 1997 Appl. Opt. 36 2818
[11] Gittins C, Piper L, Rawlins W and Marinelli W 1999 Field Anal. Chem. Technol. 3 274
[12] Gurton K P, Ligon D and Kvavilashvili R 2001 Appl. Optics 40 4443
[13] Wang P, Liu H X and Zhao Y Z 2016 Appl. Spectrosc. 70 1456
[14] Zhao X Y, Hu Y H and Gu Y L 2015 Acta Opt. Sin. 35 0616001 (in Chinese)
[15] Sun D J, Hu Y H, Gu Y L and Wang Y 2013 Acta Phys. Sin. 62 094218 (in Chinese)
[16] Li L, Hu Y H, Chen W, Zhao Y Z and Chen S J 2015 Spectrosc. Spect. Anal. 35 89 (in Chinese)
[17] Gu Y L, Hu Y H, Zhao X Y, Chen X and Wang P 2018 Opt. Express 26 15842
[18] Gu Y L, Hu Y H, Zhao X Y, Chen X, Wang P and Zheng Z M 2019 Optik 176 535
[19] Liu H X and Zhao X S 2015 BMC Microbiol. 15 267
[20] Liu H X, Wang P, Hu Y H and Zhao G H 2015 Biocontrol Sci. Technol. 25 1011
[21] Pang H C, Luo S Z, Long X G and An Z 2006 Chin. Phys. Lett. 23 3238
[22] Segal-Rosenheimer M and Linker R 2009 J. Quant. Spectrosc. Radiat. Transfer 110 1147
[23] Lai J C, Li Z H and He A Z 2005 Chin. Phys. Lett. 22 332
[24] Sun W F, Wang X K and Zhang Y 2009 Chin. Phys. Lett. 26 114210
[25] Ji Y Q, Jiang Y G, Liu H S, Wang L S and Liu D D 2014 Chin. Phys. Lett. 31 46401
[26] Li L, Hu Y H, Gu Y L and Zhao X Y 2017 Appl. Spectrosc. 71 2555
[27] Miller L M and Dumas P 2010 Curr. Opin. Struct. Biol. 20 649
[28] Ren L and Li J 1965 Food Sci. 30 388
[29] Pace N R 1997 Science 276 734
[30] Quaroni L and Zlateva T 2011 Analyst 136 3219
[1] Temperature-induced effect on refractive index of graphene based on coated in-fiber Mach-Zehnder interferometer
Li-Jun Li(李丽君), Shun-Shun Gong(宫顺顺), Yi-Lin Liu(刘仪琳), Lin Xu(徐琳), Wen-Xian Li(李文宪), Qian Ma(马茜), Xiao-Zhe Ding(丁小哲), Xiao-Li Guo(郭晓丽). Chin. Phys. B, 2017, 26(11): 116504.
No Suggested Reading articles found!