Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(1): 010703    DOI: 10.1088/1674-1056/28/1/010703
GENERAL Prev   Next  

H couple-group consensus of stochastic multi-agent systems with fixed and Markovian switching communication topologies

Muyun Fang(方木云)1, Cancan Zhou(周灿灿)1, Xin Huang(黄鑫)1, Xiao Li(李晓)2, Jianping Zhou(周建平)1
1 School of Computer Science and Technology, Anhui University of Technology, Ma'anshan 243032, China;
2 School of Computer Science and Technology, Huaibei Normal University, Huaibei 235000, China
Abstract  

The paper addresses the issue of H couple-group consensus for a class of discrete-time stochastic multi-agent systems via output-feedback control. Both fixed and Markovian switching communication topologies are considered. By employing linear transformations, the closed-loop systems are converted into reduced-order systems and the H couple-group consensus issue under consideration is changed into a stochastic H control problem. New conditions for the mean-square asymptotic stability and H performance of the reduced-order systems are proposed. On the basis of these conditions, constructive approaches for the design of the output-feedback control protocols are developed for the fixed communication topology and the Markovian switching communication topologies, respectively. Finally, two numerical examples are given to illustrate the applicability of the present design approaches.

Keywords:  multi-agent system      couple-group consensus      output feedback control      switching topologies  
Received:  28 September 2018      Revised:  10 November 2018      Published:  05 January 2019
PACS:  07.05.Dz (Control systems)  
  05.10.-a (Computational methods in statistical physics and nonlinear dynamics)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 61503002 and 61573008).

Corresponding Authors:  Jianping Zhou     E-mail:  jpzhou0@gmail.com

Cite this article: 

Muyun Fang(方木云), Cancan Zhou(周灿灿), Xin Huang(黄鑫), Xiao Li(李晓), Jianping Zhou(周建平) H couple-group consensus of stochastic multi-agent systems with fixed and Markovian switching communication topologies 2019 Chin. Phys. B 28 010703

[1] Khazaei J and Nguyen D H 2017 IEEE Trans. Smart Grid
[2] Peng Z, Wen G, Yang S and Rahmani A 2016 Nonlinear Dyn. 86 605
[3] Yu W, Chen G, Wang Z and Yang W 2009 IEEE Trans. Syst. Man Cybern. B 39 1568
[4] Yan Z, Liu Y, Zhou J, Zhang W and Wang L 2017 Chin. Phys. B 26 040203
[5] Hong Y, Hu J and Gao L 2016 Automatica 42 1177
[6] Ren W 2010 IEEE Trans. Control Syst. Technol. 18 230
[7] Olfati-Saber R and Murray R M 2002 IEEE Trans. Automat. Control, 49 1520
[8] Qin J, Ma Q, Shi Y and Wang L 2017 IEEE Trans. Ind. Electron. 64 4972
[9] Yuan D, Ho D W C and Jiang G 2017 IEEE Trans. Cybern.
[10] Wang J, Su L, Shen H, Wu Z and Park J 2017 J. Franklin Inst. 354 1302
[11] Shahamatkhah E and Tabatabaei M 2018 Chin. Phys. B 27 010701
[12] Jin X, Wang S, Qin J, Zheng W and Kang Y 2018 IEEE Trans. Circuits Syst. I. Regul. Pap. 65 2243
[13] Li X, Zhou C, Zhou J, Wang Z and Xia J 2018 Int. J. Control Autom. Syst. in press
[14] Wang Y, Tu L, Song S and Li K 2018 Acta Phys. Sin. 67 050504 (in Chinese)
[15] Xie D, Zhang S and Xie J 2018 Physica A 509 1195
[16] Lu X, Francis A and Chen S 2010 Chin. Phys. B 19 120506
[17] Ma Q, Wang Z and Miao G 2014 J. Franklin Inst. 351 1288
[18] Liao X and Ji L 2014 Neurocomputing 135 262
[19] Feng Y and Zheng W 2018 IET Control Theory Appl. 12 753
[20] Zhao H and Park J 2014 Nonlinear Dyn. 77 1297
[21] Shang Y 2015 J. Franklin Inst. 352 4826
[22] Xie D, Shi L and Jiang F 2017 Neurocomputing 281 37
[23] Liu Y and Jia Y 2010 Int. J. Control 83 527
[24] Qin J, Ma Q, Zheng W, Gao H and Kang Y 2017 IEEE Trans. Automat. Contr. 62 3559
[25] Stoorvogel A 1992 The H∞ Control Problem: A State Space Approach (New York: Prentice Hall)
[26] Wang P and Jia Y 2016 Int. J. Syst. Sci. 47 1073
[27] Cui Y, Fei M and Du D 2016 IET Gener. Transm. Dis. 10 2565
[28] Liang H, Zhang H, Wang Z and Wang J 2014 Chin. Phys. B 23 018902
[29] Zhou J, Park J and Ma Q 2016 Appl. Math. Comput. 291 69
[30] Mao X 1999 Stoch. Process. Their App. l79 45
[31] Xu S, Lam J and Chen T 2004 Syst. Control. Lett. 51 203
[32] Lin P, Jia Y and Li L 2008 Syst. Control. Lett. 57 643
[33] Zhou J, Sang C, Li X, Fang M and Wang Z 2018 Appl. Math. Comput. 325 41
[34] Chang X, Yang C and Xiong J 2018 IEEE Trans. Syst. Man Cybern. Syst.
[35] Li S, Yang L and Li K 2015 Chin. Phys. B 24 010503
[36] Ma Q, Xu S, Lewis F L, Zhang B and Zou Y 2016 IEEE trans. Cybern. 46 1471
[37] Yan Z, Sang C, Fang M and Zhou J 2018 Trans. Inst. Meas. Control
[38] Xia J, Zhang J, Sun W, Zhang B and Wang Z 2018 IEEE Trans. Syst. Man Cybern. Syst.
[39] Wang Z, Shen L, Xia J, Shen H and Wang J 2018 J. Franklin Inst. 355 6371
[40] Shen H, Li F, Yan H, Karimi H R and Lam H K 2017 IEEE Trans. Fuzzy Syst.
[41] Song X, Wang M, Song S and Tejado 2018 IEEE Access 6 50066
[42] Zhuang G, Li Y and Li Z 2014 Int J. Syst. Sci. 47 1514
[43] Liu Y, Guo B, Park J and Lee S 2018 IEEE Trans. Fuzzy Syst. 26 2089
[1] Hybrid-triggered consensus for multi-agent systems with time-delays, uncertain switching topologies, and stochastic cyber-attacks
Xia Chen(陈侠), Li-Yuan Yin(尹立远), Yong-Tai Liu(刘永泰), Hao Liu(刘皓). Chin. Phys. B, 2019, 28(9): 090701.
[2] Group consensus of multi-agent systems subjected to cyber-attacks
Hai-Yun Gao(高海云), Ai-Hua Hu(胡爱花), Wan-Qiang Shen(沈莞蔷), Zheng-Xian Jiang(江正仙). Chin. Phys. B, 2019, 28(6): 060501.
[3] Successive lag cluster consensus on multi-agent systems via delay-dependent impulsive control
Xiao-Fen Qiu(邱小芬), Yin-Xing Zhang(张银星), Ke-Zan Li(李科赞). Chin. Phys. B, 2019, 28(5): 050501.
[4] Mean-square composite-rotating consensus of second-order systems with communication noises
Li-po Mo(莫立坡), Shao-yan Guo(郭少岩), Yong-guang Yu(于永光). Chin. Phys. B, 2018, 27(7): 070504.
[5] Distance-based formation tracking control of multi-agent systems with double-integrator dynamics
Zixing Wu(吴梓杏), Jinsheng Sun(孙金生), Ximing Wang(王希铭). Chin. Phys. B, 2018, 27(6): 060202.
[6] Time-varying formation for general linear multi-agent systems via distributed event-triggered control under switching topologies
Jin-Huan Wang(王金环), Yu-Ling Xu(许玉玲), Jian Zhang(张建), De-Dong Yang(杨德东). Chin. Phys. B, 2018, 27(4): 040504.
[7] Generation of optimal persistent formations for heterogeneous multi-agent systems with a leader constraint
Guo-Qiang Wang(王国强), He Luo(罗贺), Xiao-Xuan Hu(胡笑旋). Chin. Phys. B, 2018, 27(2): 028901.
[8] Leader-following consensus of discrete-time fractional-order multi-agent systems
Erfan Shahamatkhah, Mohammad Tabatabaei. Chin. Phys. B, 2018, 27(1): 010701.
[9] Tracking consensus for nonlinear heterogeneous multi-agent systems subject to unknown disturbances via sliding mode control
Xiang Zhang(张翔), Jin-Huan Wang(王金环), De-Dong Yang(杨德东), Yong Xu(徐勇). Chin. Phys. B, 2017, 26(7): 070501.
[10] Cooperative impulsive formation control for networked uncertain Euler-Lagrange systems with communication delays
Liang-ming Chen(陈亮名), Chuan-jiang Li(李传江), Yan-chao Sun(孙延超), Guang-fu Ma(马广富). Chin. Phys. B, 2017, 26(6): 068703.
[11] Stochastic bounded consensus of second-order multi-agent systems in noisy environment
Hong-Wei Ren(任红卫), Fei-Qi Deng(邓飞其). Chin. Phys. B, 2017, 26(10): 100506.
[12] Asymptotic bounded consensus tracking of double-integratormulti-agent systems with bounded-jerk target based onsampled-data without velocity measurements
Shuang-Shuang Wu(吴爽爽), Zhi-Hai Wu(吴治海), Li Peng(彭力), Lin-Bo Xie(谢林柏). Chin. Phys. B, 2017, 26(1): 018903.
[13] Distributed event-triggered consensus tracking of second-order multi-agent systems with a virtual leader
Jie Cao(曹劼), Zhi-Hai Wu(吴治海), Li Peng(彭力). Chin. Phys. B, 2016, 25(5): 058902.
[14] Consensus for second-order multi-agent systems with position sampled data
Rusheng Wang(王如生), Lixin Gao(高利新), Wenhai Chen(陈文海), Dameng Dai(戴大蒙). Chin. Phys. B, 2016, 25(10): 100202.
[15] Rigidity based formation tracking for multi-agent networks
Bai Lu, Chen Fei, Lan Wei-Yao. Chin. Phys. B, 2015, 24(9): 090206.
No Suggested Reading articles found!