Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(6): 060307    DOI: 10.1088/1674-1056/27/6/060307
GENERAL Prev   Next  

Topologically protected edge gap solitons of interacting Bosons in one-dimensional superlattices

Xi-Hua Guo(郭西华), Tian-Fu Xu(徐天赋), Cheng-Shi Liu(刘承师)
Department of Physics, Yanshan University, Qinhuangdao 066004, China
Abstract  We comprehensively investigate the nontrivial states of an interacting Bose system in a cosine potential under the open boundary condition. Our results show that there exists a kind of stable localized state:edge gap solitons. We argue that the states originate from the eigenstates of independent edge parabolas. In particular, the edge gap solitons exhibit a nonzero topological-invariant behavior. The topological nature is due to the connection of the present model to the quantized adiabatic particle transport problem. In addition, the composition relations between the gap solitons and the extended states are also discussed.
Keywords:  one-dimensional optical superlattices      interacting Boses      edge gap solitons      topological invariant  
Received:  30 October 2017      Revised:  24 February 2018      Published:  05 June 2018
PACS:  03.75.Lm (Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations)  
  05.30.Jp (Boson systems)  
  73.21.Cd (Superlattices)  
Fund: Project supported by the Natural Science Foundation of Hebei Province,China (Grant Nos.A2012203174 and A2015203387) and the National Natural Science Foundation of China (Grant Nos.10974169 and 11304270).
Corresponding Authors:  Tian-Fu Xu, Cheng-Shi Liu     E-mail:;

Cite this article: 

Xi-Hua Guo(郭西华), Tian-Fu Xu(徐天赋), Cheng-Shi Liu(刘承师) Topologically protected edge gap solitons of interacting Bosons in one-dimensional superlattices 2018 Chin. Phys. B 27 060307

[1] Su W P, Schrieffer J R and Heeger A J 1979 Phys. Rev. Lett. 42 1698
[2] Li L, Xu Z and Chen S 2014 Phys. Rev. B 89 085111
[3] Su W P, Schrieffer J R and Heeger A J 2001 Phys. -Usp. 44 131
[4] Kraus Y E, Lahini Y, Ringel Z, Verbin M and Zilberberg O 2012 Phys. Rev. Lett. 109 106402
[5] Roati G, Errico C D, Fallani L, Fattori M, Fort C, Zaccanti M, Modugno G, Modugno M and Inguscio M 2008 Nature 453 895
[6] Fallani L, Lye J E, Guarrera V, Fort C and Inguscio M 2007 Phys. Rev. Lett. 98 130404
[7] Yu R, Fang Z and Dai X 2011 Physics 40 0 (in Chinese)
[8] Meier J, Stegeman G I, Christodoulides D N, Silberberg Y, Morandotti R, Yang H, Salamo G, Sorel M and Aitchison J S 2004 Phys. Rev. Lett. 92 163902
[9] Louis P J Y, Ostrovskaya E A, Savage C M and Kivshar Y S 2003 Phys. Rev. A 67 013602
[10] Zhang Y and Wu B 2009 Phys. Rev. Lett. 102 093905
[11] Aschcoft N W and Mermin N D 1976 Solid State Physics (New York:Holt, Rinehart and Winston Inc.)
[12] Lü X, Wang J P, Lin F H and Zhou X W 2018 Nonlinear Dyn. 91 1249
[13] Zhou Z, Zhong H H, Zhu B, Xiao F X, Zhu K and Tan J T 2016 Chin. Phys. Lett. 33 110301
[14] Burger S, Cataliotti F S, Fort C, Minardi F, Inguscio M, Chiofalo M L and Tosi M P 2001 Phys. Rev. Lett. 86 4447
[15] Liu C, Wang Z, Yin C, Wu Y, Xu T, Wen L and Chen S 2017 Physica E 90 183
[16] Lü X, Ma W X, Yu J and Khalique C M 2016 Commun. Nonlinear Sci. Num. Simul. 31 40
[17] Lü X and Lin F 2016 Commun. Nonlinear Sci. Num. Simul. 32 241
[18] Lü X,, Chen S T and Ma W X 2016 Nonlinear Dyn. 86 523
[19] Li Y E and Xue J K 2016 Chin. Phys. Lett. 33 100502
[20] Wu B and Niu Q 2003 New J. Phys. 5 104
[21] Kivshar Y and Agrawal G 2003 From Fibers to Photonic Crystals p. 540
[22] Zhang Y, Liang Z and Wu B 2009 Phys. Rev. A 80 063815
[23] Hasan M Z and Kane C L 2010 Rev. Mod. Phys. 82 3045
[24] Qi X L and Zhang S C 2011 Rev. Mod. Phys. 83 1057
[25] Thouless D J 1983 Phys. Rev. B 27 6083
[26] Bohm A, Mostafazadeh A, Koizumi H, Niu Q and Zwanziger J 2003 The Geometric Phase in Quantum Systems (Berlin/Heidelberg:Springer-Verlag)
[27] Fukui T, Hatsugai Y and Suzuki H 2005 J. Phys. Soc. Jpn. 74 1674
[28] Xu T F, Guo X M, Jing X L, Wu W C and Liu C S 2011 Phys. Rev. A 83 043610
[29] Xu T F, Jing X L, Luo H G, Wu W C and Liu C S 2013 J. Phys. B:At., Mol. Opt. Phys. 46 035301
[1] Probe of topological invariants using quantum walks of a trapped ion in coherent state space
Ya Meng(蒙雅), Feng Mei(梅锋), Gang Chen(陈刚), Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2020, 29(7): 070501.
[2] A new way to construct topological invariants of non-Hermitian systems with the non-Hermitian skin effect
J S Liu(刘建森), Y Z Han(韩炎桢), C S Liu(刘承师). Chin. Phys. B, 2020, 29(1): 010302.
[3] SymTopo:An automatic tool for calculating topological properties of nonmagnetic crystalline materials
Yuqing He(贺雨晴), Yi Jiang(蒋毅), Tiantian Zhang(张田田), He Huang(黄荷), Chen Fang(方辰), Zhong Jin(金钟). Chin. Phys. B, 2019, 28(8): 087102.
[4] Quantum spin Hall insulators in chemically functionalized As (110) and Sb (110) films
Xiahong Wang(王夏烘), Ping Li(李平), Zhao Ran(冉召), Weidong Luo(罗卫东). Chin. Phys. B, 2018, 27(8): 087305.
[5] Static and dynamic properties of polymer brush with topological ring structures: Molecular dynamic simulation
Wu-Bing Wan(万吴兵), Hong-Hong Lv(吕红红), Holger Merlitz(候格), Chen-Xu Wu(吴晨旭). Chin. Phys. B, 2016, 25(10): 106101.
No Suggested Reading articles found!