Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(2): 020301    DOI: 10.1088/1674-1056/27/2/020301
GENERAL Prev   Next  

Energy states of the Hulthen plus Coulomb-like potential with position-dependent mass function in external magnetic fields

M Eshghi1, R Sever2, S M Ikhdair3,4
1. Young Researchers and Elite Club, Central Tehran Branch, Islamic Azad University, Tehran, Iran;
2. Department of Physics, Middle East Technical University, Ankara, Turkey;
3. Department of Physics, Faculty of Science, An-Najah National University, Nablus, West Bank, Palestine;
4. Department of Electrical Engineering, Near East University, Nicosia, Northern Cyprus, Mersin 10, Turkey
Abstract  

We need to solve a suitable exponential form of the position-dependent mass (PDM) Schrödinger equation with a charged particle placed in the Hulthen plus Coulomb-like potential field and under the actions of the external magnetic and Aharonov-Bohm (AB) flux fields. The bound state energies and their corresponding wave functions are calculated for the spatially-dependent mass distribution function of interest in physics. A few plots of some numerical results with respect to the energy are shown.

Keywords:  Schrödinger equation      Hulthen plus Coulomb-like potential      position-dependent mass distribution functions      perpendicular magnetic and Aharonov-Bohm flux fields     
Received:  17 July 2017      Published:  05 February 2018
PACS:  03.65.Ge (Solutions of wave equations: bound states)  
  03.65.Db (Functional analytical methods)  
  03.65.Ca (Formalism)  
  03.65.Fd (Algebraic methods)  
Corresponding Authors:  M Eshghi     E-mail:  eshgi54@gmail.com,m.eshghi@semnan.ac.ir
About author:  03.65.Ge; 03.65.Db; 03.65.Ca; 03.65.Fd

Cite this article: 

M Eshghi, R Sever, S M Ikhdair Energy states of the Hulthen plus Coulomb-like potential with position-dependent mass function in external magnetic fields 2018 Chin. Phys. B 27 020301

[1] Flugge S Practical Quantum Mechanics 1974(Berlin, Heidelberg, New York:Springer-Verlag)
[2] Eshghi M and Mehraban H 2016 Math. Meth. Aappl. Sci. 39 1599
[3] Lu L, Xie W and Shu Z 2011 Physica B 406 3735
[4] Hartmann R R, Robinson N J and Portnoi M E 2010 Phys. Rev. B 81 245431
[5] Ji N, Shi M, Guo J Y, Niu Z M and Liang H 2016 Phys. Rev. Lett. 117 062502
[6] Hayrapetyan D B, Kazaryan E M and Tevosyan H Kh 2013 Super. Microstruc. 64 204
[7] Wang D and Jin G 2009 Phys. Lett. A 373 4082
[8] Dong S H and Lozada-Cassou M 2004 Phys. Lett. A 330 168
[9] Jia C S, Li Y, Sun Y and Sun L T 2003 Phys. Lett. A 311 115
[10] Aydogdu O and Sever R 2010 Ann. Phys. 325 373
[11] Chen G 2004 Phys. Lett. A 326 55
[12] Ikhdair S M and Sever R 2007 J. Mol. Struc. THEOCHEM 806 155
[13] Arda A and Sever R 2012 Commun. Theor. Phys. 58 27
[14] Zhang M C, Sun G H and Dong S H 2010 Phys. Lett. A 374 704
[15] Eshghi M and Mehraban H 2016 J. Math. Phys. 57 082105
[16] Eshghi M and Mehraban H 2017 C. R. Physique 18 47
[17] Slater J C 1949 Phys. Rev. 76 1592
[18] Ikhdair S M and Sever R 2010 Appl. Math. Comp. 216 545
[19] Rajbongshi H and Nimai Singh N 2013 J. Mod. Phys. 4 1540
[20] Arda A and Sever R 2010 Chin. Phys. Lett. 27 010106
[21] Falaye B J, Serrano F A and Dong S H 2016 Phys. Lett. A 380 267
[22] Jia C S, Wang P Q, Liu J Y and He S 2008 Int. J. Theor. Phys. 47 2513
[23] Eshghi M, Hamzavi M and Ikhdair S M 2013 Chin. Phys. B 22 030303
[24] Eshghi M and Mehraban H 2012 Few-Body Syst. 52 41
[25] Eshghi M and Abdi M R 2013 Chin. Phys. C 37 053103
[26] Panahi H and Bakhshi Z 2011 J. Phys. A:Math. Theor. 44 175304
[27] Mustafa O and Habib Mazaherimousavi S 2009 Phys. Lett. A 373 325
[28] Ikhdair S M, Hamzavi M and Sever R 2012 Physica B 407 4523
[29] Bonatsos D, Georgoudis P E, Minkov N, Petrellis D and Quesne C 2013 Phys. Rev. C 88 034316
[30] Eshghi M, Mehraban H and Ikhdair S M 2016 Eur. Phys. J. A 52 201
[31] Ikhdair S M, Falaye B J and Hamzavi M 2015 Ann. Phys. 353 282
[32] Sharifi Z, Tajic F, Hamzavi M and Ikhdair S M 2015 Z. Naturf. A 70 499
[33] Bonatsos D, Georgoudis P E, Lenis D, Minkov N and Quesne C 2010 Phys. Lett. B 683 264
[34] Khordad R 2010 Solid State Sci. 12 1253
[35] Yuce C 2006 Phys. Rev. A 74 062106
[36] Ustoglu Unal V, Aksahin E and Aytekin O 2013 Phys. Rev. E 47 103
[37] Kestner N R and Sinanoglu O 1962 Phys. Rev. 128 2687
[38] Greiner W 2001 Quantum Mechanics:an Introduction (Berlin:Springer-Verlag)
[39] Dong S H 2007 Factorization Method in Quantum Mechanics (Springer)
[40] Slavyanov S Y, Lay W and Seeger A 2000 Special Functions:A Unifield Theory Based on Singularities (New York:Oxford University Press)
[41] Aharonov Y and Bohm D 1959 Phys. Rev. 115 485
[42] Kryuchkov S V and Kukhar E I 2014 Physica B:Condens. Matter 445 93
[43] Weishbuch C and Vinter B 1993 Quantum Semiconductor Heterostructure (New York:Academic Press)
[44] Frankenberg C, Meiring J F, Van Weele M, Platt U and Wagner T 2005 Science 308 1010
[45] Baura A, Kumar Sen M and Chandra Bag B 2013 Chem. Phys. 417 30
[46] Haken H and Wolf H C 1995 Molecular Physics and Elements of Quantum Chemistry:Introduction to Experiments and Theory (Berlin:Springer)
[47] Arda A and Sever R 2012 J. Math. Chem. 50 971
[48] Figueiredo Medeiros E R and Bezerra de Mello E R 2012 Eur. Phys. J. C 72 2051
[49] Eshghi M, Mehraban H and Ikhdair S M 2017 Chin. Phys. B 26 060302
[50] Jiang L, Yi L Z and Jia C S 2005 Phys. Lett. A 345 279
[51] Eshghi M and Mehraban H 2017 Eur. Phys. J. Plus 132 121
[52] Greene R L and Aldrich C 1976 Phys. Rev. A 14 2363
[53] Nikoforov A F and Uvarov V B 1988 Special Functions of Mathematical Physics (Basel:Birkhausar)
[54] Patria R K 1972 Statistical Mechanics (Oxford:Pergamon Press)
[55] Wang J F, Peng X L, Zhang L H, Wang C W and Jia C S 2017 Chem. Phys. Lett. 686 131
[56] Jia C S, Wang C W, Zhang L H, Peng X L, Zeng R and You X T 2017 Chem. Phys. Lett. 676 150
[57] Song X Q, Wang C W and Jia C S 2017 Chem. Phys. Lett. 673 50
[58] Jia C S, Zhang L H and Wang C W 2017 Chem. Phys. Lett. 667 211
[59] Buchowiecki M 2017 Chem. Phys. Lett. 687 227
[1] Efficient solver for time-dependent Schrödinger equation with interaction between atoms and strong laser field
Sheng-Peng Zhou(周胜鹏), Ai-Hua Liu(刘爱华), Fang Liu(刘芳), Chun-Cheng Wang(王春成), Da-Jun Ding(丁大军). Chin. Phys. B, 2019, 28(8): 083101.
[2] Quantum photodetachment of hydrogen negative ion in a harmonic potential subjected to static electric field
Azmat Iqbal, Kiran Humayun, Sana Maqsood, Saba Jawaid, Afaq Ahmad, Amin Ur Rahman, Bakht Amin Bacha. Chin. Phys. B, 2019, 28(2): 023201.
[3] Dynamics of three nonisospectral nonlinear Schrödinger equations
Abdselam Silem, Cheng Zhang(张成), Da-Jun Zhang(张大军). Chin. Phys. B, 2019, 28(2): 020202.
[4] Exact solitary wave solutions of a nonlinear Schrödinger equation model with saturable-like nonlinearities governing modulated waves in a discrete electrical lattice
Serge Bruno Yamgoué, Guy Roger Deffo, Eric Tala-Tebue, François Beceau Pelap. Chin. Phys. B, 2018, 27(12): 126303.
[5] Approximate energies and thermal properties of a position-dependent mass charged particle under external magnetic fields
M Eshghi, H Mehraban, S M Ikhdair. Chin. Phys. B, 2017, 26(6): 060302.
[6] Bound states resulting from interaction of the non-relativistic particles with the multiparameter potential
Ahmet Taş, Ali Havare. Chin. Phys. B, 2017, 26(10): 100301.
[7] Dynamics of cubic-quintic nonlinear Schrödinger equation with different parameters
Wei Hua(花巍), Xue-Shen Liu(刘学深), Shi-Xing Liu(刘世兴). Chin. Phys. B, 2016, 25(5): 050202.
[8] Nonautonomous solitary-wave solutions of the generalized nonautonomous cubic–quintic nonlinear Schrödinger equation with time- and space-modulated coefficients
He Jun-Rong, Li Hua-Mei. Chin. Phys. B, 2013, 22(4): 040310.
[9] Multisymplectic implicit and explicit methods for Klein–Gordon–Schrödinger equations
Cai Jia-Xiang, Yang Bin, Liang Hua. Chin. Phys. B, 2013, 22(3): 030209.
[10] A new finite difference scheme for a dissipative cubic nonlinear Schr"odinger equation
Zhang Rong-Pei, Yu Xi-Jun, Zhao Guo-Zhong. Chin. Phys. B, 2011, 20(3): 030204.
[11] Approximate solutions of Schrödinger equation for Eckart potential with centrifugal term
F. Tacskin, G. Koccak. Chin. Phys. B, 2010, 19(9): 090314.
[12] Bound states of the Schrödinger equation for the Pöschl–Teller double-ring-shaped Coulomb potential
Lu Fa-Lin, Chen Chang-Yuan. Chin. Phys. B, 2010, 19(10): 100309.
No Suggested Reading articles found!