Please wait a minute...
Chin. Phys. B, 2018, Vol. 27(12): 127702    DOI: 10.1088/1674-1056/27/12/127702
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Epitaxially strained SnTiO3 at finite temperatures

Dawei Wang(王大威)1, Laijun Liu(刘来君)2, Jia Liu(刘佳)3, Nan Zhang(张楠)4, Xiaoyong Wei(魏晓勇)4
1 School of Microelectronics and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China;
2 College of Materials Science and Engineering, Guilin University of Technology, Guilin 541004, China;
3 State Key Laboratory for Mechanical Behavior of Materials & School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, China;
4 Electronic Materials Research Laboratory-Key Laboratory of the Ministry of Education and International Center for Dielectric Research, Xi'an Jiaotong University, Xi'an 710049, China
Abstract  

By combining the effective Hamiltonian approach and direct ab initio computation, we obtain the phase diagram of SnTiO3 with respect to epitaxial strain and temperature. This demonstrates the complex features of the phase diagram and provides an insight into this system, which is a presumably simple perovskite. Two triple points, as shown in the phase diagram, may be exploited to achieve high-performance piezoelectric effects. Despite the inclusion of the degree of freedom related to oxygen octahedron tilting, the ferroelectric displacements dominate the structural phases over the whole misfit strain range. Finally, we show that SnTiO3 can change from hard to soft ferroelectrics with the epitaxial strain.

Keywords:  SnTiO3      phase diagram      epitaxial strain  
Received:  14 August 2018      Revised:  09 September 2018      Accepted manuscript online: 
PACS:  77.80.-e (Ferroelectricity and antiferroelectricity)  
  77.84.-s (Dielectric, piezoelectric, ferroelectric, and antiferroelectric materials)  
  81.30.Bx (Phase diagrams of metals, alloys, and oxides)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11574246, 51390472, U1537210, and 11564010), the National Basic Research Program of China (Grant No. 2015CB654903), the Natural Science Foundation of Guangxi Zhuang Autonomous Region (Grant Nos. GA139008 and AA138162), and the “111” Project of China (Grant No. B14040).

Corresponding Authors:  Dawei Wang, Laijun Liu     E-mail:  dawei.wang@mail.xjtu.edu.edu;2009011@glut.edu.edu

Cite this article: 

Dawei Wang(王大威), Laijun Liu(刘来君), Jia Liu(刘佳), Nan Zhang(张楠), Xiaoyong Wei(魏晓勇) Epitaxially strained SnTiO3 at finite temperatures 2018 Chin. Phys. B 27 127702

[1] Xu R J, Liu S, Grinberg I, Karthik J, Damodaran A R, Rappe A M and Martion L W 2015 Nat. Mater. 14 79
[2] Jaffe B, Cook W R and Jaffe H 1971 Piezoelectric Ceramics (London: Academic)
[3] Saito Y, Takao H, Tani T, Nonoyama T, Takatori K, Homma T, Nagaya T and Nakamura M 2004 Nature 432 84
[4] Liu W F and Ren X B 2009 Phys. Rev. Lett. 103 257602
[5] Jaffe B, Roth R S and Marzullo S 1954 J. Appl. Phys. 25 809
[6] Zeng Y, Bokov A A, Wang D, Xiang F and Hong W 2018 Ceram. Inter. 44 17548
[7] Wessels B W 2007 Ann. Rev. Mater. Res. 37 659
[8] Ramesh R and Spaldin N A 2007 Nat. Mater. 6 21
[9] Hwang H Y, Iwasa Y, Kawasaki M, Keimer B, Nagaosa N and Tokura Y 2012 Nat. Mater. 11 103
[10] Yamada H, Ogawa Y, Ishii Y, Sato H, Kawasaki M, Akoh H and Tokura Y 2004 Science 305 646
[11] Ohtomo A and Hwang H Y 2004 Nature 427 423
[12] Spaldin N A and Fiebig M 2005 Science 309 391
[13] Wang L, Ju S, You L, Qi Y J, Guo Y W, Ren P, Zhou Y and Wang J L 2015 Sci. Rep. 5 18707
[14] He F Z, Wells B O, Ban Z G, Alpay S P, Grenier S, Shapiro S M, Si W D, Clark A and Xi X X 2004 Phys. Rev. B. 70 235405
[15] Jiang Z J, Zhang R Z, Wang D W, Sichuga D, Jia C L and Bellaiche L 2014 Phys. Rev. B 89 214113
[16] Wu J, Xiao D and Zhu J 2015 Chem. Rev. 115 2559
[17] Armiento R, Kozinsky B, Fornari M and Ceder G 2011 Phys. Rev. B 84 014103
[18] Matar S, Baraille I and Subramanian M 2009 Chem. Phys. 355 43
[19] Lebedev A I 2009 Phys. Solid State 51 362
[20] Parker W D, Rondinelli J M and Nakhmanson S M 2011 Phys. Rev. B 84 245126
[21] Xie Y H, Yin S, Hashimoto T, Kimura H and Sato T 2009 J. Mater. Sci. 44 4834
[22] Ren P R, Liu Z C, Wang Q, Peng B L, Ke S M, Fan H Q and Zhao G Y 2017 Sci. Rep. 7 6693
[23] Bennett J W, Grinberg I, Davies P K and Rappe A M 2011 Phys. Rev. B 83 144112
[24] Suzuki S, Honda A, Iwaji N, Higai S, Ando A, Takagi H, Kasatani H and Deguchi K 2012 Phys. Rev. B 86 060102
[25] Laurita G, Page K, Suzuki S and Seshadri R 2015 Phys. Rev. B 92 214109
[26] Agarwal R, et al. 2018 Phys. Rev. B 97 054109
[27] Taib M F M, Yaakob M K, Hassan O H and Yahya M Z 2013 Integr. Ferroelectr. 142 119
[28] Taib M F M, Yaakob M K, Badrudin F W, Kudin T I T, Hassan O H and Yahya M Z A 2014 Integr. Ferroelectr. 459 134
[29] Uratani Y, Shishidou T and Oguchi T 2008 Jpn. J. Appl. Phys. 47 7735
[30] Zhang R Z, Wang D W, Li F, Ye H J, Wei X Y and Xu Z 2013 Appl. Phys. Lett. 103 062905
[31] Zhang R Z, Wang D W, Zhu X H, Ye H J, Wei X Y and Xu Z 2014 J. Appl. Phys. 116 174101
[32] Zhong W, Vanderbilt D and Rabe K M 1994 Phys. Rev. Lett. 73 1861
[33] Zhong W, Vanderbilt D and Rabe K M 1995 Phys. Rev. B 52 6301
[34] H J Ye, Wang D W, Jiang Z J, Cheng S and Wei X Y 2016 Acta Phys. Sin. 65 237101 (in Chinese)
[35] Nishimatsu T, Iwamoto M, Kawazoe Y, and Waghmare U V 2010 Phys. Rev. B 82 134106
[36] Vanderbilt D and Cohen M H 2001 Phys. Rev. B 63 094108
[37] Kornev I A, Bellaiche L, Janolin P E, Dkhil B and Suard E 2006 Phys. Rev. Lett. 97 157601
[38] King-Smith R D and Vanderbilt D 1994 Phys. Rev. B 49 5828
[39] Jiang Z J, Xu B, Li F, Wang D, and Jia C L 2015 Phys. Rev. B 91 014105
[40] Al-Barakaty A, Prosandeev S, Wang D, Dkhil B, Bellaiche L 2015 Phys. Rev. B 91 214117
[41] Gonze X, Beuken J M, Caracas R, Detraux F, Fuchs M, Rignanese G M, Sindic L, Verstraete M, Zerah G, Jollet F, Torrent M, Roy A, Mikami M, Ghosez P, Raty J Y and Allan D C 2002 Comput. Mater. Sci. 25 478
[42] Perdew J P and Wang Y 1992 Phys. Rev. B 45 13244
[43] Blochl P E 1994 Phys. Rev. B 50 17953
[44] Garrity K F, Bennett J W, Rabe K M and Vanderbilt D 2014 Comput. Mater. Sci. 81 446
[45] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[46] Liu K, Fan H Q, Ren P R and Yang C 2010 J. Alloys Compd. 509 1901
[47] Zhang J X, He Q, Trassin M, et al. 2011 Phys. Rev. Lett. 107 147602
[48] Zhang N, Yokota H, Glazer A M, Ren Z, Keen D A, Keeble D S, Thomas P A and Ye Z G 2014 Nat. Commun. 5 5231
[49] Lu X, Zheng L, Li H and Cao W 2015 J. Appl. Phys. 117 134101
[50] Liu H, Chen J, Fan L, Ren Y, Pan Z, Lalitha K V, Rdel J and Xing X 2017 Phys. Rev. Lett. 119 017601
[51] Schlom D G, Chen L Q, Eom C B, Rabe K M, Streiffer S K and Triscone J M 2007 Ann. Rev. Mater. Res. 37 589
[52] Xue D Z, Zhou Y M, Bao H X, Gao J H, Zhou C and Ren X B 2011 Appl. Phys. Lett. 99 122901
[53] Liu L J, Zheng S Y, Huang Y M, Shi D P, Wu S S, Fang L, Hu C Z and Elouadi B 2012 J. Phys. D: Appl. Phys. 45 295403
[54] Guo R, Cross L E, Park S E, Noheda B, Cox D E and Shirane G 2000 Phys. Rev. Lett. 84 5423
[55] Cox D E, Noheda B, Shirane G, Uesu Y, Fujishiro K and Yamada Y 2001 Appl. Phys. Lett. 79 400
[56] Liu L J, Huang Y M, Li Y H, Fang L, Dammak H, Fan H Q and Thi M P 2012 Mater. Lett. 68 300
[57] Wada S, Suzuki S, Noma T, Suzuki T, et al. 1999 Jpn. J. Appl. Phys. 38 5505
[58] Wang D W, et al., 2011 Phys. Rev. Lett. 107 175502
[59] Pitike K C, Parker W D, Louis L and Nakhmanson S M 2015 Phys. Rev. B 91 035112
[1] Magnetization and magnetic phase diagrams of a spin-1/2 ferrimagnetic diamond chain at low temperature
Tai-Min Cheng(成泰民), Mei-Lin Li(李美霖), Zhi-Rui Cheng(成智睿), Guo-Liang Yu(禹国梁), Shu-Sheng Sun(孙树生), Chong-Yuan Ge(葛崇员), and Xin-Xin Zhang(张新欣). Chin. Phys. B, 2021, 30(5): 057503.
[2] Dynamic phase transition of ferroelectric nanotube described by a spin-1/2 transverse Ising model
Chundong Wang(王春栋), Ying Wu(吴瑛), Yulin Cao(曹喻霖), and Xinying Xue(薛新英). Chin. Phys. B, 2021, 30(2): 020504.
[3] Physical properties and phase diagram of NaFe1 -xVxAs
Guang-Yang Dai(代光阳), Xin He(何鑫), Zhi-Wen Li(李芷文), Chang-Ling Zhang(张昌玲), Lu-Chuan Shi(史鲁川), Run-Ze Yu(于润泽), Xian-Cheng Wang(望贤成), and Chang-Qing Jin(靳常青). Chin. Phys. B, 2021, 30(1): 017401.
[4] Parametric study of the clustering transition in vibration driven granular gas system
Qi-Lin Wu(吴麒麟), Mei-Ying Hou(厚美瑛), Lei Yang(杨磊), Wei Wang(王伟), Guang-Hui Yang(杨光辉), Ke-Wei Tao(陶科伟), Liang-Wen Chen(陈良文), Sheng Zhang(张晟). Chin. Phys. B, 2020, 29(5): 054502.
[5] Phase diagrams and magnetic properties of the mixed spin-1 and spin-3/2 Ising ferromagnetic thin film:Monte Carlo treatment
B Boughazi, M Boughrara, M Kerouad. Chin. Phys. B, 2019, 28(2): 027501.
[6] Equation of state for aluminum in warm dense matter regime
Kun Wang(王坤), Dong Zhang(张董), Zong-Qian Shi(史宗谦), Yuan-Jie Shi(石元杰), Tian-Hao Wang(王天浩), Yue Zhang(张阅). Chin. Phys. B, 2019, 28(1): 016401.
[7] Structural phase transition, precursory electronic anomaly, and strong-coupling superconductivity in quasi-skutterudite (Sr1-xCax)3Ir4Sn13 and Ca3Rh4Sn13
Jun Luo(罗军), Jie Yang(杨杰), S Maeda, Zheng Li(李政), Guo-Qing Zheng(郑国庆). Chin. Phys. B, 2018, 27(7): 077401.
[8] Cubic anvil cell apparatus for high-pressure and low-temperature physical property measurements
Jin-Guang Cheng(程金光), Bo-Sen Wang(王铂森), Jian-Ping Sun(孙建平), Yoshiya Uwatoko. Chin. Phys. B, 2018, 27(7): 077403.
[9] Calculation of electric field-temperature (E, T) phase diagram of a ferroelectric liquid crystal near the SmA-SmCα* transition
F Trabelsi, H Dhaouadi, O Riahi, T Othman. Chin. Phys. B, 2018, 27(3): 037701.
[10] Electro-optical properties and (E, T) phase diagram of fluorinated chiral smectic liquid crystals
R Zgueb, H Dhaouadi, T Othman. Chin. Phys. B, 2018, 27(10): 107701.
[11] Passivation effects of phosphorus on 4H-SiC (0001) Si dangling bonds: A first-principles study
Wenbo Li(李文波), Ling Li(李玲), Fangfang Wang(王方方), Liu Zheng(郑柳), Jinghua Xia(夏经华), Fuwen Qin(秦福文), Xiaolin Wang(王晓琳), Yongping Li(李永平), Rui Liu(刘瑞), Dejun Wang(王德君), Yan Pan(潘艳), Fei Yang(杨霏). Chin. Phys. B, 2017, 26(3): 037104.
[12] Pressure effect on magnetic phase transition and spin-glass-like behavior of GdCo2B2
Guang-Hui Hu(胡光辉), Ling-Wei Li(李领伟), Umehara Izuru. Chin. Phys. B, 2016, 25(6): 067501.
[13] Li-ion batteries: Phase transition
Peiyu Hou(侯配玉), Geng Chu(褚赓), Jian Gao(高健), Yantao Zhang(张彦涛), Lianqi Zhang(张联齐). Chin. Phys. B, 2016, 25(1): 016104.
[14] Magnetic hysteresis, compensation behaviors, and phase diagrams of bilayer honeycomb lattices
Ersin Kantar. Chin. Phys. B, 2015, 24(10): 107501.
[15] Ferrofluid nucleus phase transitions in an external uniform magnetic field
B. M. Tanygin, S. I. Shulyma, V. F. Kovalenko, M. V. Petrychuk. Chin. Phys. B, 2015, 24(10): 104702.
No Suggested Reading articles found!