Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(7): 077701    DOI: 10.1088/1674-1056/26/7/077701
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Electrical analysis of inter-growth structured Bi4Ti3O12–Na0.5Bi4.5Ti4O15 ceramics

Xiangping Jiang(江向平), Yalin Jiang(江亚林), Xingan Jiang(江兴安), Chao Chen(陈超), Na Tu(涂娜), Yunjing Chen(陈云婧)
Jiangxi Key Laboratory of Advanced Ceramic Materials, Department of Material Science and Engineering, Jingdezhen Ceramic Institute, Jingdezhen 333001, China
Abstract  Inter-growth bismuth layer-structured ferroelectrics (BLSFs), Bi4Ti3O12–Na0.5Bi4.5Ti4O15 (BIT–NBT), were successfully synthesized using the traditional solid-state reaction method. X-ray diffraction (XRD) Rietveld refinements were conducted using GSAS software. Good agreement and low residual are obtained. The XRD diffraction peaks can be well indexed into I2cm space group. The inter-growth structure was further observed in the high-resolution TEM image. Dielectric and impedance properties were measured and systematically analyzed. At the temperature range 763–923 K (below Tc), doubly ionized oxygen vacancies (OVs) are localized and the short-range hopping leads to the relaxation processes with an activation energy of 0.79–1.01 eV. Above Tc, the doubly charged OVs are delocalized and become free ones, which contribute to the long-range dc conduction. The reduction in relaxation species gives rise to a higher relaxation activation energy~1.6 eV.
Keywords:  Bi4Ti3O12–Na0.5Bi4.5Ti4O15      impedance spectroscopy      oxygen vacancies-related defect dipoles      electrical analysis  
Received:  15 December 2016      Revised:  02 April 2017      Accepted manuscript online: 
PACS:  77.65.Bn (Piezoelectric and electrostrictive constants)  
  77.80.B- (Phase transitions and Curie point)  
  77.84.-s (Dielectric, piezoelectric, ferroelectric, and antiferroelectric materials)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos.51562014,51262009,and 51602135).
Corresponding Authors:  Xingan Jiang, Chao Chen     E-mail:  XINGAN.JIANG@Yahoo.com;cc2762@163.com

Cite this article: 

Xiangping Jiang(江向平), Yalin Jiang(江亚林), Xingan Jiang(江兴安), Chao Chen(陈超), Na Tu(涂娜), Yunjing Chen(陈云婧) Electrical analysis of inter-growth structured Bi4Ti3O12–Na0.5Bi4.5Ti4O15 ceramics 2017 Chin. Phys. B 26 077701

[1] Kikuchi T 1976 J. Less-common Metals 48 319
[2] Kikuchi T, Watanabe A and Uchida K 1977 Mater. Res. Bull. 12 299
[3] Yi Z G, Li Y X, Wen Z Y and Wang S R 2005 Appl. Phys. Lett. 86 192906
[4] Noguchi Y, Miyayama M and T Kudo 2000 Appl. Phys. Lett. 77 3639
[5] Wang H, Li J, Xu J W, Yang L and Zhou S J 2011 Adv. Mater. Res. 197 1781
[6] Maalal R, Manier M and Mercurio J P 1995 J. Eur. Ceram. Soc. 15 1135
[7] Tuohig W D and Tien T Y 1980 J. Am. Ceram. Soc. 63 595
[8] Tellier J, Boullay P and Mercurio D 2007 Z. Kristallogr. 222 234
[9] Parida G and Bera J 2014 Phase Transitions. 87 452
[10] Jonscher A K 1976 Thin Solid Films. 36 1
[11] Jonscher A K 1977 Nature. 267 673
[12] Yuan C L, Liu X Y, Zhou C R, Xu J W and Yang Y 2011 Chin. Phys. B 20 048701
[13] Asma B A and Muhammad J A 2011 Chin. Phys. B 20 058102
[14] Lu Z, Bonnet J P, J Ravez and Hagenmuller P 1992 Solid State Ionics 57 235
[15] Kajewski D and Ujma Z 2013 Ceram. Int. 39 8213
[16] Yokoi A and Sugishita J 2008 J. Alloys Compd. 452 467
[17] Zhang T F, Tang X G and Liu Q X 2015 J. Am. Ceram. Soc. 98 551
[18] Jonscher A K 1999 J. Phys. D:Appl. Phys. 32 R57
[19] Wang C C, Lei C M and Wang G J 2013 J. Appl. Phys. 113 094103
[20] Nowick A S and Lim B S 2001 Phys. Rev. B 63 184115
[21] Li W and Schwartz R W 2007 Phys. Rev. B 22 012104
[22] Nobre M A L and Lanfredi S 2000 Chromatographia 51 S98
[23] Panlener R J and Blumenthal R N 2006 J. Am. Ceram. Soc. 54 610
[24] Waser R, Tudor B and Härdtl K H 1990 J. Am. Ceram. Soc. 73 1645
[25] Chen A, Yu Z and Cross L E 2000 Phys. Rev. B. 62 228
[26] Changbai Long, Huiqing Fan and Pengrong Ren 2013 Inor. Chem. 52 5045
[1] Influence of N+ implantation on structure, morphology, and corrosion behavior of Al in NaCl solution
Hadi Savaloni, Rezvan Karami, Helma Sadat Bahari, Fateme Abdi. Chin. Phys. B, 2020, 29(5): 058102.
[2] Dielectric properties of nucleated erythrocytes as simulated by the double spherical-shell model
Jia Xu(徐佳), Weizhen Xie(谢伟珍), Yiyong Chen(陈一勇), Lihong Wang(王立洪), and Qing Ma(马青). Chin. Phys. B, 2020, 29(12): 128703.
[3] Homogeneous interface-type resistance switching in Au/La0.67Ca0.33MnO3/SrTiO3/F:SnO2 heterojunction memories
Zhang Ting(张婷), Ding Ling-Hong(丁玲红), and Zhang Wei-Feng(张伟风) . Chin. Phys. B, 2012, 21(4): 047301.
[4] Investigation of ageing effects on the electrical properties of polyaniline/silver nanocomposites
Asma Binat Afzal and Muhammad Javed Akhtar. Chin. Phys. B, 2011, 20(5): 058102.
[5] Characterization of the BaBiO3-doped BaTiO3 positive temperature coefficient of a resistivity ceramic using impedance spectroscopy with Tc=155℃
Yuan Chang-Lai(袁昌来), Liu Xin-Yu(刘心宇), Zhou Chang-Rong(周昌荣), Xu Ji-Wen(许积文), and Yang Yun(杨云) . Chin. Phys. B, 2011, 20(4): 048701.
[6] Characteristics of sealed plasma electrolytic oxidation coatings with electrochemical impedance spectroscopy
Lü Guo-Hua(吕国华), Chen Huan(陈睆), Wang Xing-Quan(王兴权), Pang Hua(庞华), Zhang Gu-Ling(张谷令), Zou Bin(邹斌), Lee Heon-Ju, and Yang Si-Ze(杨思泽). Chin. Phys. B, 2010, 19(8): 085202.
[7] Oxygen-vacancy-related dielectric relaxation and conduction mechanisms in Bi5 TiNbWO15 ceramics
Wang Xiao-Juan(王晓娟), Gong Zhi-Qiang(龚志强), Qian Ya-Feng(钱亚峰), Zhu Jun(朱骏), and Chen Xiao-Bing(陈小兵). Chin. Phys. B, 2007, 16(7): 2131-2135.
No Suggested Reading articles found!