Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(4): 044201    DOI: 10.1088/1674-1056/26/4/044201
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Investigation of three-pulse photon echo in thick crystal using finite-difference time-domain method

Xiu-Rong Ma(马秀荣)1, Lin Xu(徐林)2, Shi-Yuan Chang(常世元)3, Shuang-Gen Zhang(张双根)4
1 Department of Computer and Communication Engineering, Tianjin University of Technology, Tianjin 300384, China;
2 Engineering Research Center of Communication Devices and Technology, Ministry of Education, Tianjin Key Laboratory of Film Electronic and Communication Devices, Tianjin 300384, China
Abstract  This paper investigates the phenomenon of three-pulse photon echo in thick rare-earth ions doped crystal whose thickness is far larger than 0.002 cm which is adopted in previous works. The influence of thickness on the three-pulse photon echo's amplitude and efficiency is analyzed with the Maxwell-Bloch equations solved by finite-difference time-domain method. We demonstrate that the amplitude of three-pulse echo will increase with the increasing of thickness and the optimum thickness to generate three-pulse photon echo is 0.3 cm for Tm3+:YAG when the attenuation of the input pulse is taken into account. Meanwhile, we find the expression 0.09exp(α'L), which is previously employed to describe the relationship between echo's efficiency and thickness, should be modified as 1.3·0.09exp(2.4·α'L ight) with the propagation of echo considered.
Keywords:  three-pulse photon echo      Maxwell-Bloch equations      finite-difference time-domain method  
Received:  20 October 2016      Revised:  01 December 2016      Published:  05 April 2017
PACS:  42.50.Md (Optical transient phenomena: quantum beats, photon echo, free-induction decay, dephasings and revivals, optical nutation, and self-induced transparency)  
  03.65.Sq (Semiclassical theories and applications)  
  14.70.Bh (Photons)  
Fund: Project supported by Tianjin Research Program Application Foundation and Advanced Technology, China (Grant No. 15JCQNJC01100).
Corresponding Authors:  Lin Xu     E-mail:  xulin_tjut@139.com

Cite this article: 

Xiu-Rong Ma(马秀荣), Lin Xu(徐林), Shi-Yuan Chang(常世元), Shuang-Gen Zhang(张双根) Investigation of three-pulse photon echo in thick crystal using finite-difference time-domain method 2017 Chin. Phys. B 26 044201

[1] Bonarota M, Ruggiero J, Gouët J L L and Chaneliére T 2010 Phys. Rev. A 81 76
[2] Chaneliére T, Ruggiero J, Bonarota M, Afzelius M and Gouët J L L 2009 New J. Phys. 12 802
[3] Damon V, Crozatier V, Chaneliére T, Jean-Louis Le Gouet and Ivan Lorgere 2010 J. Opt. Soc. Am. B 27 524
[4] Barber Z, Tian M, Reibel Rand Babbitt W R 2002 Opt. Express 10 1145
[5] Ma X R, Wang S, Zhang S G, Zhang S Y and Liang Y Q 2015 IEEE Commun. Lett. 19 179
[6] Ma X R, Wang S, Liang Y Q and Shan Y L 2015 Appl. Opt. 54 2891
[7] Sangouard N, Simon C 2010 Phys. Rev. A 81 062333
[8] Ma X R, Liang Y Q, Wang S, Zhang S G and Shan Y L 2016 Chin. Phys. B 25 070302
[9] Ziolkowski R W, Arnold J M and Gogny D M 1995 Phys. Rev. A 52 3082
[10] Schlottau F, Piket-May M and Wagner K 2005 Opt. Express 13 182
[11] Tiranov A D, Karimullin K R and Samartsev V V 2012 Bull. Russ. Acad. Sci. Phys. 76 299
[12] Ma X R, Zhang S Y and Zhang S G 2014 Chin. Phys. B 23 060304
[13] Brewer R G and Shoemaker R L 1971 Phys. Rev. Lett. 27 631
[14] Pierre Meystre and Murray Sargent III 2007 Elements of Quantum Optics, 4th edn. (Springer Press) pp. 6-7
[15] McCall S L and Hahn E L 1969 Phys. Rev. 183 457
[16] Alekseyev A I and Basharov A M 1981 Opt. Commun. 36 291
[17] Endo T, Nakanishi S, Muramoto T and Hashi T 1981 Opt. Commun. 37 369
[1] Propagation characteristics of oblique incidence terahertz wave through non-uniform plasma
Antao Chen(陈安涛), Haoyu Sun(孙浩宇), Yiping Han(韩一平), Jiajie Wang(汪加洁), Zhiwei Cui(崔志伟). Chin. Phys. B, 2019, 28(1): 014201.
[2] Soliton-cnoidal interactional wave solutions for the reduced Maxwell-Bloch equations
Li-Li Huang(黄丽丽), Zhi-Jun Qiao(乔志军), Yong Chen(陈勇). Chin. Phys. B, 2018, 27(2): 020201.
[3] Optical simulation of in-plane-switching blue phase liquid crystal display using the finite-difference time-domain method
Hu Dou(窦虎), Hongmei Ma(马红梅), Yu-Bao Sun(孙玉宝). Chin. Phys. B, 2016, 25(9): 094221.
[4] A subwavelength metal-grating assisted sensor of Kretschmann style for investigating the sample with high refractive index
Xu-Feng Li(李旭峰), Wei Peng(彭伟), Ya-Li Zhao(赵亚丽), Qiao Wang(王乔), Ji-Lin Wei(魏计林). Chin. Phys. B, 2016, 25(3): 037303.
[5] Rear-surface light intensification caused by Hertzian-conical crack in 355-nm silica optics
Zhang Chun-Lai, Yuan Xiao-Dong, Xiang Xia, Wang Zhi-Guo, Liu Chun-Ming, Li Li, He Shao-Bo, Zu Xiao-Tao. Chin. Phys. B, 2012, 21(9): 094213.
[6] Optical properties of the two-port resonant tunneling filters in two-dimensional photonic crystal slabs
Ren Cheng, Cheng Li-Feng, Kang Feng, Gan Lin, Zhang Dao-Zhong, Li Zhi-Yuan. Chin. Phys. B, 2012, 21(10): 104210.
[7] Splitting the surface wave in metal/dielectric nanostructures
Zhu Song, Wu Jian. Chin. Phys. B, 2011, 20(6): 067901.
[8] Bandgap characteristics of 2D plasma photonic crystal with oblique incidence:TM case
Xie Ying-Tao, Yang Li-Xia. Chin. Phys. B, 2011, 20(6): 060201.
[9] Engineering the light propagating features through the two-dimensional coupled-cavity photonic crystal waveguides
Feng Shuai, Wang Yi-Quan. Chin. Phys. B, 2011, 20(5): 054209.
[10] A numerical simulation of surface wave excitation in a rectangular planar-type plasma source
Chen Zhao-Quan, Liu Ming-Hai, Lan Chao-Hui, Chen Wei, Tang Liang, Luo Zhi-Qing, Yan Bao-Rong, Lü Jian-Hong, Hu Xi-Wei. Chin. Phys. B, 2009, 18(8): 3484-3489.
[11] A virtual optical probe based on evanescent wave interference
Sun Li-Qun, Wang Jia, Hong Tao, Tian Qian. Chin. Phys. B, 2002, 11(10): 1022-1027.
No Suggested Reading articles found!