Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(4): 040201    DOI: 10.1088/1674-1056/26/4/040201
GENERAL   Next  

Improved control of distributed parameter systems using wireless sensor and actuator networks: An observer-based method

Zheng-Xian Jiang(江正仙)1,2,3, Bao-Tong Cui(崔宝同)2,3, Xu-Yang Lou(楼旭阳)2,3, Bo Zhuang(庄波)2,3
1 School of Science, Jiangnan University, Wuxi 214122, China;
2 School of IoT Engineering, Jiangnan University, Wuxi 214122, China;
3 Key Laboratory of Advanced Process Control for Light Industry(Ministry of Education), Jiangnan University, Wuxi 214122, China
Abstract  In this paper, the control problem of distributed parameter systems is investigated by using wireless sensor and actuator networks with the observer-based method. Firstly, a centralized observer which makes use of the measurement information provided by the fixed sensors is designed to estimate the distributed parameter systems. The mobile agents, each of which is affixed with a controller and an actuator, can provide the observer-based control for the target systems. By using Lyapunov stability arguments, the stability for the estimation error system and distributed parameter control system is proved, meanwhile a guidance scheme for each mobile actuator is provided to improve the control performance. A numerical example is finally used to demonstrate the effectiveness and the advantages of the proposed approaches.
Keywords:  distributed parameter systems      wireless sensor and actuator networks      mobile actuator      observer  
Received:  29 October 2016      Revised:  09 January 2017      Published:  05 April 2017
PACS:  02.30.Jr (Partial differential equations)  
  02.30.Yy (Control theory)  
  84.40.Ua (Telecommunications: signal transmission and processing; communication satellites)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61174021 and 61473136) and the 111 Project of China (Grant No. B12018).
Corresponding Authors:  Zheng-Xian Jiang     E-mail:

Cite this article: 

Zheng-Xian Jiang(江正仙), Bao-Tong Cui(崔宝同), Xu-Yang Lou(楼旭阳), Bo Zhuang(庄波) Improved control of distributed parameter systems using wireless sensor and actuator networks: An observer-based method 2017 Chin. Phys. B 26 040201

[1] Akyildiz I F, Su W L, Sankarasubramaniam Y and Cayirci E 2002 IEEE Commun. Mag. 40 102
[2] Verdone R, Dardari D, Mazzini G and Conti A 2008 Wireless sensor and actuator networks: technologies, analysis and design (London: Elsevier)
[3] Kulakowski P, Calle E and Marzo J L 2013 Int. J. Commun. Syst. 26 515
[4] Pennesi P and Paschalidis I C 2010 IEEE Trans. Autom. Control 55 492
[5] Corke P, Peterson R and Rus D 2005 Int. J. Robot. Res. 24 771
[6] Wu C H, Tewolde G S, Sheng W H, Xu B and Wang Y 2011 IEEE Trans. Autom. Control 56 2462
[7] Christofides P D 2001 Nonlinear and robust control of PDE systems: Methods and applications to transport-reaction processes (Boston: Springer)
[8] Demetriou M A and Hussein I I 2009 SIAM J. Control. Optim. 48 266
[9] Fridman E and Blighovsky A 2012 Automatica 48 826
[10] Mu W Y, Cui B T, Lou X Y and Li W 2014 Chin. Phys. B 23 070204
[11] Jiang Z X and Cui B T 2015 Chin. Phys. B 24 020702
[12] Huang L and Li J Y 2015 Acta Phys. Sin. 64 108202 (in Chinese)
[13] Ji F Y and Zhang S L 2016 Chin. Phys. B 25 030202
[14] Chen Y Q, Wang Z M and Jiang J S 2007 Int. J. Sens. Netw. 2 169
[15] Chao H Y and Chen Y Q 2010 Numer. Math.: Theory, Methods and Applications 3 162
[16] Demetriou M A 2010 IEEE Trans. Autom. Control 55 1570
[17] Demetriou M A 2012 IEEE Trans. Autom. Control 57 2979
[18] Morris K, Demetriou M A and Yang S D 2015 IEEE Trans. Autom. Control 60 450
[19] Liu M and You J 2012 Int. J. Syst. Sci. 43 1901
[20] Ibrir S and Bettayeb M 2015 Automatica 59 216
[21] Zou L, Wang Z D and Gao H J 2016 Automatica 63 366
[22] Curtain R F and Zwart H J 1995 An Introduction to Infinite Dimensional Linear Systems Theory (Berlin: Springer) p. 248
[1] Improved control for distributed parameter systems with time-dependent spatial domains utilizing mobile sensor—actuator networks
Jian-Zhong Zhang(张建中), Bao-Tong Cui(崔宝同), Bo Zhuang(庄波). Chin. Phys. B, 2017, 26(9): 090201.
[2] Consensus for second-order multi-agent systems with position sampled data
Rusheng Wang(王如生), Lixin Gao(高利新), Wenhai Chen(陈文海), Dameng Dai(戴大蒙). Chin. Phys. B, 2016, 25(10): 100202.
[3] A novel observer design method for neural mass models
Liu Xian, Miao Dong-Kai, Gao Qing, Xu Shi-Yun. Chin. Phys. B, 2015, 24(9): 090207.
[4] Transportation-cyber-physical-systems-oriented engine cylinder pressure estimation using high gain observer
Li Yong-Fu, Kou Xiao-Pei, Zheng Tai-Xiong, Li Yin-Guo. Chin. Phys. B, 2015, 24(5): 058901.
[5] Observer of a class of chaotic systems: An application to Hindmarsh-Rose neuronal model
Luo Run-Zi, Zhang Chun-Hua. Chin. Phys. B, 2015, 24(3): 030503.
[6] Full-order sliding mode control of uncertain chaos in a permanent magnet synchronous motor based on a fuzzy extended state observer
Chen Qiang, Nan Yu-Rong, Zheng Heng-Huo, Ren Xue-Mei. Chin. Phys. B, 2015, 24(11): 110504.
[7] Optimal switching policy for performance enhancement of distributed parameter systems based on event-driven control
Mu Wen-Ying, Cui Bao-Tong, Lou Xu-Yang, Li Wen. Chin. Phys. B, 2014, 23(7): 070204.
[8] PC synchronization of a class of chaotic systems via event-triggered control
Luo Run-Zi, He Long-Min. Chin. Phys. B, 2014, 23(7): 070506.
[9] Output regulation for linear multi-agent systems with unmeasurable nodes
Liang Hong-Jing, Zhang Hua-Guang, Wang Zhan-Shan, Wang Jun-Yi. Chin. Phys. B, 2014, 23(1): 018902.
[10] Continuous-time chaotic systems:Arbitrary full-state hybrid projective synchronization via a scalar signal
Giuseppe Grassi. Chin. Phys. B, 2013, 22(8): 080505.
[11] Reliability of linear coupling synchronization of hyperchaotic systems with unknown parameters
Li Fan, Wang Chun-Ni, Ma Jun. Chin. Phys. B, 2013, 22(10): 100502.
[12] Arbitrary full-state hybrid projective synchronization for chaotic discrete-time systems via a scalar signal
Giuseppe Grassi. Chin. Phys. B, 2012, 21(6): 060504.
[13] Topology identification for a class of complex dynamical networks using output variables
Fan Chun-Xia,Wan You-Hong,Jiang Guo-Ping. Chin. Phys. B, 2012, 21(2): 020510.
[14] Robust H observer-based control for synchronization of a class of complex dynamical networks
Zheng Hai-Qing, Jing Yuan-Wei. Chin. Phys. B, 2011, 20(6): 060504.
[15] A novel robust proportional-integral (PI) adaptive observer design for chaos synchronization
Mahdi Pourgholi, Vahid Johari Majd. Chin. Phys. B, 2011, 20(12): 120503.
No Suggested Reading articles found!