1 Laboratory of Infrared Material and Devices, Advanced Technology Research Institute, Ningbo University, Ningbo 315211, China; 2 Key Laboratory of Photoelectric Materials and Devices of Zhejiang Province, Ningbo 315211, China; 3 The Australian National University, Canberra, ACT 2600, Australia
Abstract Chalcogenide glasses have shown promise in fabricating mid infrared (MIR) photonic sensing devices due to their excellent optical properties in MIR. In addition, the glass transition temperature of chalcogenide glasses are generally low, making them ideal to create the high-throughput patterns of micro-scale structures based on hot embossing that is alternative to the standard lithographic technology. In this paper, we outline the research progress in the chalcogenide waveguide based on the hot embossing method, and discuss the problems remaining to be solved and the possible solutions.
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61377061), the Public Project of Zhejiang Province, China (Grant No. 2014C31146), and sponsored by K. C. Wong Magna Fund in Ningbo University, China.
Tsay C, Mujagić E, Madsen C K, Gmachl C F and Arnold C B 2010 Opt. Express 18 15523
[3]
Ródenas A, Martin G, Arezki B, Psaila N, Jose G, Jha A, Labadie L, Kern P, Kar A and Thomson R 2012 Opt. Lett. 37 392
[4]
Zakery A and Elliott S R 2003 J. Non-Cryst. Solids 330 1
[5]
Eggleton B J, Luther-Davies B and Richardson K 2011 Nat. Photon. 5 141
[6]
Charrier J, Brandily M L, Lhermite H, Michel K, Bureau B, Verger F and Nazabal V 2012 Sensors and Actuators B 173 468
[7]
Anne M L, Keirsse J, Nazabal V, Hyodo K, Inoue S, Boussard-Pledel C, Lhermite H, Charrier J, Yanakata K Loreal O, Person J L, Colas F, Compére C and Bureau B 2009 Sensors 9 7398
[8]
Bessonov A F, Gudzenko A I, Deryugin L N, Komotskii V A, Pogosov G A, Sotin V E and Terichev V F 1976 Sov. J. Quantum Electron. 6 1248
[9]
Viens J F, Meneghini C, Villeneuve A, Galstian T V, Knystautas E J, Duguay M A, Richardson K A and Cardinal T 2002 J. Lightwave Technol. 17 1184
[10]
Choi D Y, Madden S, Bulla D, Rode A, Wang R P and Luthe-Davies B 2011 Phys. Status Solidi C 8 3183
[11]
Hu J, Tarasov V, Carlie N, Petit L, Agarwal A, Richardson K and Kimerling L 2008 Opt. Mater. 30 1560
[12]
Ruan Y L, Li W T, Jarvis R, Madsen N, Rode A and Luther-Davies B 2004 Opt. Express 12 5140
[13]
Madden S J, Choi D Y, Bulla D A, Rode A V, Luther-Davies B, Ta'eed V G, Pelusi M D and Eggleton B J 2007 Opt. Express 15 14414
[14]
Chou S Y, Krauss P R and Renstrom P J 1995 Appl. Phys. Lett. 67 3114
[15]
Chou S Y, Krauss P R and Renstrom P J 1996 J. Vac. Sci. Technol. B 14 4129
[16]
Guo L J 2004 J. Phys. D: Appl. Phys. 37 R123
[17]
Schift H 2008 J. Vac. Sci. Technol. B 26 458
[18]
Yoon K B, Choi C-G and Han S-P 2004 Jpn. J. Appl. Phys. 43 3450
[19]
Seddon A, Pan W, Furniss D, Miller C, Rowe H, Zhang D, McBrearty E, Zhang Y, Loni A and Sewell P 2006 J. Non-Cryst. Solids 352 2515
[20]
Pan W J, Furniss D, Rowe H, Miller C A, Loni A, Sewell P, Benson T M and Seddon A B 2007 J. Non-Cryst. Solids 353 1302
[21]
Pan W J, Rowe H, Zhang D K, Zhang Y J, Loni A, Furniss D, Sewell P, Benson T M and Seddon A B 2008 Microw. Opt. Technol. Lett. 50 1961
[22]
Lian Z G, Pan W J, Furniss D, Benson T M, Seddon A B, Kohoutek T, Orava J and Wagner T 2009 Opt. Lett. 34 1234
[23]
Abdel-Moneim N S, Mellor C J, Benson T M, Furniss D and Seddon A B 2015 Opt. Quantum Electron. 47 351
[24]
Han T, Madden S, Bulla D and Luther-Davies B 2010 Opt. Express 18 19286
[25]
Han T, Madden S, Debbarma S and Luther-Davies B 2011 Opt. Express 19 25447
[26]
Seddon A B, Abdel-Moneim N S, Zhang L, Pan W J, Furniss D, Mellor C J, Kohoutek T, Orava J, Wagner T and Benson T M 2014 Opt. Eng. 53 71824
[27]
Orava J, Kohoutek T, Greer A L and Fudouzi H 2011 Opt. Mater. Express 1 796
[28]
Viheriälä J, Niemi T, Kontio J, Rytkönen T and Pessa M 2007 Electron. Lett. 43 150
[29]
Musgraves J D, Richardson K and Jain H 2011 Opt. Mater. Express 1 921
[30]
Baker N J, Lee H W, Littler I C, de Sterke C M, Eggleton B J, Choi D-Y, Madden S and Luther-Davies B 2006 Opt. Express 14 9451
[31]
Miura K, Qiu J, Inouye H, Mitsuyu T and Hirao K 1997 Appl. Phys. Lett. 71 3329
[32]
Galstyan T V, Viens J F, Villeneuve A, Richardson K and Duguay M 1997 J. Lightwave Technol. 15 1343
[33]
Miura K, Inouye H, Qiu J, Mitsuyu T and Hirao K 1998 Nucl. Instrum. Methods Phys. Res., Sect. B 141 726
[34]
Seddon A B 1995 J. Non-Cryst. Solids 184 44
[35]
Zakery A and Elliott S R 2007 Optical nonlinearities in chalcogenide glasses and their applications (Berlin/Heidelberg: Springer) pp. 1-201
[36]
Vigreux-Bercovici C, Labadie L, Broquin J E, Kern P and Pradel A 2005 J. Optoelectron. Adv. Mater. 7 2625
[37]
Balan V, Vigreux C and Pradel A 2004 J. Optoelectron. Adv. Mater. 6 875
[38]
Zou Y, Lin H, Li L, Danto S, Musgraves J D, Richardson K and Hu J 2013 CLEO: Science and Innovations, June 9-14, 2013, San Jose, California, USA, CTh1J. 5
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.