Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(2): 023201    DOI: 10.1088/1674-1056/26/2/023201
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Parameter analysis for a nuclear magnetic resonance gyroscope based on bf133Cs-129Xe/131Xe

Da-Wei Zhang(张大伟), Zheng-Yi Xu(徐正一), Min Zhou(周敏), Xin-Ye Xu(徐信业)
State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200062, China
Abstract  

We theoretically investigate several parameters for the nuclear magnetic resonance gyroscope based on 133Cs-129Xe/131Xe. For a cell containing a mixture of 133Cs at saturated pressure, we investigate the optimal quenching gas (N2) pressure and the corresponding pump laser intensity to achieve 30% 133Cs polarization at the center of the cell when the static magnetic field B0 is 5 μT with different 129Xe/131Xe pressure. The effective field produced by spin-exchange polarized 129Xe or 131Xe sensed by 133Cs can also be discussed in different 129Xe/131Xe pressure conditions. Furthermore, the relationship between the detected signal and the probe laser frequency is researched. We obtain the optimum probe laser detuning from the D2 (62S1/2→62P3/2) resonance with different 129Xe/131Xe pressure owing to the pressure broadening.

Keywords:  nuclear magnetic resonance      gyroscope      optical pumping      spin-exchange collision      optical rotation  
Received:  12 October 2016      Revised:  24 November 2016      Accepted manuscript online: 
PACS:  32.10.Dk (Electric and magnetic moments, polarizabilities)  
  34.10.+x (General theories and models of atomic and molecular collisions and interactions (including statistical theories, transition state, stochastic and trajectory models, etc.))  
  51.60.+a (Magnetic properties)  
Fund: 

Project supported by the National High Technology Research and Development Program of China (Grant No. 2014AA123401), the National Key Basic Research and Development Program of China (Grant Nos. 2016YFA0302103 and 2012CB821302), the National Natural Science Foundation of China (Grant 11134003), and Shanghai Excellent Academic Leaders Program of China (Grant No. 12XD1402400).

Corresponding Authors:  Xin-Ye Xu     E-mail:  xyxu@phy.ecnu.edu.cn

Cite this article: 

Da-Wei Zhang(张大伟), Zheng-Yi Xu(徐正一), Min Zhou(周敏), Xin-Ye Xu(徐信业) Parameter analysis for a nuclear magnetic resonance gyroscope based on bf133Cs-129Xe/131Xe 2017 Chin. Phys. B 26 023201

[1] Fang J C and Qin J 2012 Sensors 12 6331
[2] Stedman G E 1997 Rep. Prog. Phys. 60 615
[3] Donley E A 2010 Proceedings of the 2010 IEEE Sensors Conference, November 1-4, 2010, Kona, HI, USA, p. 17
[4] Simpson J H, Fraser J T and Greenwood I A 1963 IEEE Trans. Aerosp. 1 1107
[5] Eklund E J, Shkel A M, Knappe S, Donley E and Kitching J 2008 Sens. Actuators A: Phys. 143 175
[6] Meyer D and Larsen M 2014 Gyroscopy and Navigation 5 75
[7] Walker T G 1989 Phys. Rev. A 40 4959
[8] Ghosh R K and Romalis M V 2010 Phys. Rev. A 81 043415
[9] Appelt S, Unlü T, Zilles K, Shah N J, Lang S B and Halling H 1999 Appl. Phys. Lett. 75 427
[10] Driehuys B, Cates G D and Happer W 1995 Phys. Rev. Lett. 74 4943
[11] Walker T G and Happer W 1997 Rev. Mod. Phys. 69 629
[12] Liu G B, Sun X P, Gu S H, Feng J W and Zhou X 2012 Physics 41 803 (in Chinese)
[13] Budker D, Kimball D F, Rochester S M, Yashchuk V V and Zolotorev M 2000 Phys. Rev. A 62 043403
[14] Grover B C, Oaks T, Kanegsberg E, Palisades P, Mark J G, Pasadena, Meyer R L and Park C (U.S. Patent) 4 157 495 [1979-10-14]
[15] Mirijanian J J 2012 "Techniques to Characterize Vapor Cell Performance for A Nuclear-Magnetic-Resonance Gyroscope", Ph. D. Dissertation (California: California Polytechnic State University, USA)
[16] Kwon T M and Oaks T (U.S. Patent) 4 461 996 [1984-08-06]
[17] Gan J H, Li Y M, Chen X Z and Liu H F 1996 Chin. Phys. Lett. 13 821
[18] Zhang J H, Zeng X J, Li Q M, Huang Q and Sun W M 2013 Chin. Phys. B 22 053202
[19] Kornack T W 2005 "A Test of CPT and Lorentz Symmetry Using a K3 He Co-magnetometer", Ph. D. Dissertation (Princeton: Princeton University, USA)
[20] Bernabeu E and Alvarez J M 1980 Phys. Rev. A 22 2690
[21] Franz F A 1968 Phys. Lett. A 27 457
[22] Seltzer S J 2008 "Developments in Alkali-Metal Atomic Magnetometry", Ph. D. Dissertation (Princeton: Princeton University, USA)
[23] Rosenberry M A, Reyes J P, Tupa D and Gay T J 2007 Phys. Rev. A 75 023401
[24] Allred J C, Lyman R N, Kornack T W and Romalis M V 2002 Phys. Rev. Lett. 89 130801
[25] Franzen W 1959 Phys. Rev. 115 850
[26] Chen C, Zhao L J, Qiu J F, Liu Y, Wang W and Lou C Y 2012 Chin. Phys.B 21 094208
[27] Martínez R J, Kennedy D J, Rosenbluh M, Donley E A, Knappe S, Seltzer S J, Ring H L, Bajaj V S and Kitching J 2014 Nature Commun. 5 3908
[1] Anti-$\mathcal{PT}$-symmetric Kerr gyroscope
Huilai Zhang(张会来), Meiyu Peng(彭美瑜), Xun-Wei Xu(徐勋卫), and Hui Jing(景辉). Chin. Phys. B, 2022, 31(1): 014215.
[2] Tri-hexagonal charge order in kagome metal CsV3Sb5 revealed by 121Sb nuclear quadrupole resonance
Chao Mu(牟超), Qiangwei Yin(殷蔷薇), Zhijun Tu(涂志俊), Chunsheng Gong(龚春生), Ping Zheng(郑萍), Hechang Lei(雷和畅), Zheng Li(李政), and Jianlin Luo(雒建林). Chin. Phys. B, 2022, 31(1): 017105.
[3] Optical state selection process with optical pumping in a cesium atomic fountain clock
Lei Han(韩蕾), Fang Fang(房芳), Wei-Liang Chen(陈伟亮), Kun Liu(刘昆), Ya-Ni Zuo(左娅妮), Fa-Song Zheng(郑发松), Shao-Yang Dai(戴少阳), and Tian-Chu Li(李天初). Chin. Phys. B, 2021, 30(8): 080602.
[4] An effective pumping method for increasing atomic utilization in a compact cold atom clock
Xin-Chuan Ouyang(欧阳鑫川), Bo-Wen Yang(杨博文), Jian-Liao Deng(邓见辽), Jin-Yin Wan(万金银), Ling Xiao(肖玲), Hang-Hang Qi(亓航航), Qing-Qing Hu(胡青青), and Hua-Dong Cheng(成华东). Chin. Phys. B, 2021, 30(8): 083202.
[5] Improvement of the short-term stability of atomic fountain clock with state preparation by two-laser optical pumping
Lei Han(韩蕾), Fang Fang(房芳), Wei-Liang Chen(陈伟亮), Kun Liu(刘昆), Shao-Yang Dai(戴少阳), Ya-Ni Zuo(左娅妮), and Tian-Chu Li(李天初). Chin. Phys. B, 2021, 30(5): 050602.
[6] Quantum simulations with nuclear magnetic resonance system
Chudan Qiu(邱楚丹), Xinfang Nie(聂新芳), and Dawei Lu(鲁大为). Chin. Phys. B, 2021, 30(4): 048201.
[7] Nodal superconducting gap in LiFeP revealed by NMR: Contrast with LiFeAs
A F Fang(房爱芳), R Zhou(周睿), H Tukada, J Yang(杨杰), Z Deng(邓正), X C Wang(望贤成) , C Q Jin(靳常青), and Guo-Qing Zheng(郑国庆). Chin. Phys. B, 2021, 30(4): 047403.
[8] Spin correlations in the S=1 armchair chain Ni2NbBO6 as seen from NMR
Kai-Yue Zeng(曾凯悦), Long Ma(马龙), Long-Meng Xu(徐龙猛), Zhao-Ming Tian(田召明), Lang-Sheng Ling(凌浪生), and Li Pi(皮雳). Chin. Phys. B, 2021, 30(4): 047503.
[9] NMR and NQR studies on transition-metal arsenide superconductors LaRu2As2, KCa2Fe4As4F2, and A2Cr3As3
Jun Luo(罗军), Chunguang Wang(王春光) Zhicheng Wang(王志成), Qi Guo(郭琦), Jie Yang(杨杰), Rui Zhou(周睿), K Matano, T Oguchi, Zhian Ren(任治安), Guanghan Cao(曹光旱), Guo-Qing Zheng(郑国庆). Chin. Phys. B, 2020, 29(6): 067402.
[10] Polarization and fundamental sensitivity of 39K (133Cs)-85Rb-21Neco-magnetometers
Jian-Hua Liu(刘建华), Dong-Yang Jing(靖东洋), Lin Zhuang(庄琳), Wei Quan(全伟), Jiancheng Fang(房建成), Wu-Ming Liu(刘伍明). Chin. Phys. B, 2020, 29(4): 043206.
[11] Influence of pump intensity on atomic spin relaxation in a vapor cell
Chen Yang(杨晨), Guan-Hua Zuo(左冠华), Zhuang-Zhuang Tian(田壮壮), Yu-Chi Zhang(张玉驰), Tian-Cai Zhang(张天才). Chin. Phys. B, 2019, 28(11): 117601.
[12] Low drift nuclear spin gyroscope with probe light intensity error suppression
Wenfeng Fan(范文峰), Wei Quan(全伟), Feng Liu(刘峰), Lihong Duan(段利红), Gang Liu(刘刚). Chin. Phys. B, 2019, 28(11): 110701.
[13] High-magnetic-field induced charge order in high-Tc cuprate superconductors
L X Zheng(郑立玄), J Li(李建), T Wu(吴涛). Chin. Phys. B, 2019, 28(11): 117402.
[14] Progress of novel diluted ferromagnetic semiconductors with decoupled spin and charge doping: Counterparts of Fe-based superconductors
Shengli Guo(郭胜利), Fanlong Ning(宁凡龙). Chin. Phys. B, 2018, 27(9): 097502.
[15] Three-mode optomechanical system for angular velocity detection
Kai Li(李凯), Sankar Davuluri, Yong Li(李勇). Chin. Phys. B, 2018, 27(8): 084203.
No Suggested Reading articles found!