|
|
Equivalent electron correlations in nonsequential double ionization of noble atoms |
Shansi Dong(董善思)1, Qiujing Han(韩秋静)2, Jingtao Zhang(张敬涛)1 |
1 Department of Physics, Shanghai Normal University, Shanghai 200234, China; 2 Qingdao Binhan University, Qingdao 266555, China |
|
|
Abstract Electron correlation is encoded directly in the distribution of the energetic electrons produced in a recollision-impact double ionization process, and varies with the laser field and the target atoms. In order to get equivalent electron correlation effects, one should enlarge the laser intensity cubically and the laser frequency linearly in proportion to the second ionization potentials of the target atoms. The physical mechanism behind the transform is to keep the ponderomotive parameter unchanged when the laser frequency is enlarged.
|
Received: 08 September 2016
Revised: 27 October 2016
Accepted manuscript online:
|
PACS:
|
32.80.Rm
|
(Multiphoton ionization and excitation to highly excited states)
|
|
32.80.Fb
|
(Photoionization of atoms and ions)
|
|
34.50.Rk
|
(Laser-modified scattering and reactions)
|
|
42.50.Hz
|
(Strong-field excitation of optical transitions in quantum systems; multiphoton processes; dynamic Stark shift)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61475168 and 11674231) and sponsored by Shanghai Gaofeng & Gaoyuan Project for University Academic Program Development (Zhang). |
Corresponding Authors:
Jingtao Zhang
E-mail: jtzhang@shnu.edu.cn
|
Cite this article:
Shansi Dong(董善思), Qiujing Han(韩秋静), Jingtao Zhang(张敬涛) Equivalent electron correlations in nonsequential double ionization of noble atoms 2017 Chin. Phys. B 26 023202
|
[1] |
Becker W, Liu X, Ho P and Eberly J H 2012 Rev. Mod. Phys. 84 1011
|
[2] |
Xie X, Lostedt E, Roither S, Schofler M, Kartashov D, Midorikawa K, Baltuška A, Yamanouchi K and Kitzler M 2015 Sci. Rep. 5 12877
|
[3] |
Talebpour A, Larochelle S and Chin S L 1997 J. Phys. B: At. Mol. Opt. Phys. 30 L245
|
[4] |
Weber T H, Giessen H, Weckenbrock M, Urbasch G, Staudte A, Spielberger L, Jagutzki O, Mergel V, Vollmer M and Döner R 2000 Nature 405 658
|
[5] |
Yu B H, Li Y B and Tang Q B 2013 Chin. Phys. B 22 013206
|
[6] |
Staudte A, Ruiz C, Schofler M, Schossler S, Zeidler D, Weber Th, Meckel M, Villeneuve D M, Corkum P B, Becker A and Dorner R 2007 Phys. Rev. Lett. 99 26300
|
[7] |
Bergues B, Kūel M, Johnson N G, Fischer B, Camus N, Betsch K J, Herrwerth O, Senftleben A, Sayler A M, Rathje T, Ben-Itzhak I, Jones R R, Paulus G G, Krausz F, Moshammer R, Ullrich J and Kling M F 2012 2012 Nat. Commun. 3 813
|
[8] |
Pfeiffer A N, Cirelli C, Smolarski M, Döner R and Keller U 2011 Nat. Phys. 7 428
|
[9] |
Liu Y, Tschuch S, Rudenko A, Durr M, Siegel M, Morgner U, Moshammer R and Ullrich J 2008 Phys. Rev. Lett. 101 053001
|
[10] |
Zhang Z, Zhang J, Bai L and Wang X 2015 Opt. Express 23 7044
|
[11] |
Tate J, Auguste T, Muller H.G, Salieres P, Agostini P and DiMauro L F 2007 Phys. Rev. Lett. 98 013901
|
[12] |
Gordon A and Kartner F 2005 Opt. Express 13 2941
|
[13] |
Ye D, Li M, Liu J, Gong Q, Liu Y and Ullrich J 2015 Phys. Rev. Lett. 115 123001
|
[14] |
Guo D S, Zhang J, Xu Z, Li X, Fu P and Freeman R R 2003 Phys. Rev. A 68 043404
|
[15] |
Zhang J and Guo D S 2013 Phys. Rev. Lett. 110 063002
|
[16] |
Dong S, Zhang Z, Bai L and Zhang J 2015 Phys. Rev. A 92 033409
|
[17] |
Feuerstein B, Moshammer R, Fischer D, Dorn A, Schröer C D, Deipenwisch J, Crespo Lopez-Urrutia J R, Hör C, Neumayer P, Ullrich J, Rottke H, Trump C, Wittmann M, Korn G and Sandner W 2001 Phys. Rev. Lett. 87 043003
|
[18] |
Haan S L and Smith Z S 2007 Phys. Rev. A 76 053412
|
[19] |
Su Q and Eberly J H 1991 Phys. Rev. A 44 5997
|
[20] |
Wang X, Tian J and Eberly J H 2013 Phys. Rev. Lett. 110 073001
|
[21] |
Wang X and Eberly J H 2009 Phys. Rev. Lett. 103 103007
|
[22] |
Wang X and Eberly J H 2012 Phys. Rev. A 86 013421
|
[23] |
Mauger F, Chandre C and Uzer T 2010 Phys. Rev. Lett. 105 083002
|
[24] |
Panfili R, Haan S L and Eberly J H 2002 Phys. Rev. Lett. 89 113001
|
[25] |
Haan S L, Breen L, Karim A and Eberly J H 2006 Phys. Rev. Lett. 97 103008
|
[26] |
Zhang J, Xie X, Roither S, Zhou Y, Lu P, Kartashov D, Schoffler M, Shafir D, Corkum P.B, Baltuška A, Staudte A and Kitzler M 2014 Phys. Rev. Lett. 112 193002
|
[27] |
Zhang J, Zhang W, Xu Z, Li X, Fu P, Guo D S and Freeman R R 2002 J. Phys. B: At. Mol. Opt. Phys. 35 4809
|
[28] |
ZHang X, Zhang J, Bai L, Gong Q and Xu Z 2005 Opt. Express 13 8708
|
[29] |
Zhang J, Bai L, Gong S, Xu Z and Guo D S 2007 Opt. Express 15 7261
|
[30] |
Ye H, Wu Y, Zhang J and Guo D S 2011 Opt. Express 19 20849
|
[31] |
Wu Y, Ye H, Shao C and Zhang J 2012 Chin. Phys. B 2 024210
|
[32] |
Becker A and Faisal F H M 2002 Phys. Rev. Lett. 89 193003
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|