Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(3): 030201    DOI: 10.1088/1674-1056/25/3/030201
GENERAL   Next  

Application of asymptotic iteration method to a deformed well problem

Hakan Ciftci1, H F Kisoglu2
1. Gazi Üniversitesi, Fen Fakültesi, Fizik Bölümü 06500 Teknikokullar Ankara, Türkiye;
2. Maritime Faculty, Department of Basic Sciences, Mersin University, Mersin, Turkey

The asymptotic iteration method (AIM) is used to obtain the quasi-exact solutions of the Schrödinger equation with a deformed well potential. For arbitrary potential parameters, a numerical aspect of AIM is also applied to obtain highly accurate energy eigenvalues. Additionally, the perturbation expansion, based on the AIM approach, is utilized to obtain simple analytic expressions for the energy eigenvalues.

Keywords:  asymptotic iteration method      quasi-exact solutions      perturbation method      approximate solutions     
Received:  23 June 2015      Published:  05 March 2016
PACS:  02.30.Hq (Ordinary differential equations)  
  02.60.Cb (Numerical simulation; solution of equations)  
  03.65.Ge (Solutions of wave equations: bound states)  
  03.65.-w (Quantum mechanics)  
Corresponding Authors:  Hakan Ciftci, H F Kisoglu     E-mail:;

Cite this article: 

Hakan Ciftci, H F Kisoglu Application of asymptotic iteration method to a deformed well problem 2016 Chin. Phys. B 25 030201

[1] Ciftci H, Hall R L and Saad N 2003 J. Phys. A: Math. Gen. 36 11807
[2] Ciftci H, Hall R L and Saad N 2005 J. Phys. A: Math. Gen. 38 1147
[3] Ciftci H, Hall R L and Saad N 2013 Cent. Eur. J. Phys. 11 37
[4] Ozer O and Levai G 2012 Rom. Journ. Phys. 57 582
[5] Champion B, Hall R L and Saad N 2008 Int. J. Mod. Phys. A 23 1405
[6] Falaye B J, Hamzavi M and Ikhdair S M 2013 Chin. Phys. Lett. 30 020305
[7] Aygun M, Bayrak O and Boztosun I 2007 J. Phys. B: At. Mol. Opt. Phys. 40 537
[8] Ciftci H, Hall R L and Saad N 2005 Phys. Rev. A 72 022101
[9] Turbiner A V 2012 J. Phys. A: Math. Gen. 45 025203
[10] Ozer O 2009 Progress of Theoretical Physics 121 437
[11] Yahiaoui S A and Bentaiba M 2011 Acta Physica Polonica B 42 1755
[12] Hall R L, Saad N, Sen K D and Ciftci H 2009 Phys. Rev. A 80 032507
[13] Ciftci H, Hall R L, Saad N and Dogu E 2010 J. Phys. A: Math. Theor. 43 415206
[14] Bayrak O and Boztosun I 2006 J. Phys. A: Math. Gen. 39 6955
[15] Ciftci H, Hall R L and Saad N 2005 J. Phys. A: Math. Gen. 39 2338
[16] Barakat T 2006 J. Phys. A: Math. Gen. 39 823
[17] Ciftci H, Hall R L and Saad N 2005 Phys. Lett. A 340 388
[1] Numerical simulation on modulational instability of ion-acoustic waves in plasma
Yi-Rong Ma(马艺荣), Lie-Juan Li(李烈娟), Wen-Shan Duan(段文山). Chin. Phys. B, 2019, 28(2): 025201.
[2] Ground-state energy of beryllium atom with parameter perturbation method
Feng Wu(吴锋), Lijuan Meng(孟丽娟). Chin. Phys. B, 2018, 27(9): 093101.
[3] Soliton excitations in a polariton condensate with defects
Abderahim Mahmoud Belounis, Salem Kessal. Chin. Phys. B, 2018, 27(1): 010307.
[4] Bound states resulting from interaction of the non-relativistic particles with the multiparameter potential
Ahmet Taş, Ali Havare. Chin. Phys. B, 2017, 26(10): 100301.
[5] K—P—Burgers equation in negative ion-rich relativistic dusty plasma including the effect of kinematic viscosity
A N Dev, M K Deka, J Sarma, D Saikia, N C Adhikary. Chin. Phys. B, 2016, 25(10): 105202.
[6] Space–time fractional KdV–Burgers equation for dust acoustic shock waves in dusty plasma with non-thermal ions
Emad K. El-Shewy, Abeer A. Mahmoud, Ashraf M. Tawfik, Essam M. Abulwafa, Ahmed Elgarayhi. Chin. Phys. B, 2014, 23(7): 070505.
[7] Relativistic symmetries with the trigonometric Pöschl-Teller potential plus Coulomb-like tensor interaction
Babatunde J. Falaye, Sameer M. Ikhdair. Chin. Phys. B, 2013, 22(6): 060305.
[8] Solutions of the Duffin Kemmer Petiau equation in the presence of Hulthén potential in (1+2) dimensions for unity spin particles using the asymptotic iteration method
Z. Molaee, M. K. Bahar, F. Yasuk, H. Hassanabadi. Chin. Phys. B, 2013, 22(6): 060306.
[9] Bound states of the Dirac equation with position-dependent mass for the Eckart potential
Bahar M. K., Yasuk F.. Chin. Phys. B, 2013, 22(1): 010301.
[10] Perturbation method of studying the EI Niño oscillation with two parameters using delay sea–air oscillator model
Du Zeng-Ji, Lin Wan-Tao, Mo Jia-Qi. Chin. Phys. B, 2012, 21(9): 090201.
[11] Approximate solution of the magneto-hydrodynamic flow over a nonlinear stretching sheet
Eerdunbuhe,Temuerchaolu. Chin. Phys. B, 2012, 21(3): 035201.
[12] Variational-integral perturbation corrections of some lower excited states for hydrogen atoms in magnetic fields
Yuan Lin, Zhao Yun-Hui, Xu Jun, Zhou Ben-Hu, Hai Wen-Hua. Chin. Phys. B, 2012, 21(10): 103103.
[13] Ground eigenvalue and eigenfunction of a spin-weighted spheroidal wave equation in low frequencies
Tang Wen-Lin, Tian Gui-Hua. Chin. Phys. B, 2011, 20(5): 050301.
[14] Solving ground eigenvalue and eigenfunction of spheroidal wave equation at low frequency by supersymmetric quantum mechanics method
Tang Wen-Lin, Tian Gui-Hua. Chin. Phys. B, 2011, 20(1): 010304.
[15] A new method to obtain approximate symmetry of nonlinear evolution equation from perturbations
Zhang Zhi-Yong, Yong Xue-Lin, Chen Yu-Fu. Chin. Phys. B, 2009, 18(7): 2629-2633.
No Suggested Reading articles found!