Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(10): 100202    DOI: 10.1088/1674-1056/25/10/100202
GENERAL Prev   Next  

Consensus for second-order multi-agent systems with position sampled data

Rusheng Wang(王如生)1, Lixin Gao(高利新)1, Wenhai Chen(陈文海)1, Dameng Dai(戴大蒙)2
1 Institute of Intelligent Systems and Decision, Wenzhou University, Wenzhou 325035, China;
2 College of Physics & Electronic Information Engineering, Wenzhou University, Wenzhou 325035, China
Abstract  In this paper, the consensus problem with position sampled data for second-order multi-agent systems is investigated. The interaction topology among the agents is depicted by a directed graph. The full-order and reduced-order observers with position sampled data are proposed, by which two kinds of sampled data-based consensus protocols are constructed. With the provided sampled protocols, the consensus convergence analysis of a continuous-time multi-agent system is equivalently transformed into that of a discrete-time system. Then, by using matrix theory and a sampled control analysis method, some sufficient and necessary consensus conditions based on the coupling parameters, spectrum of the Laplacian matrix and sampling period are obtained. While the sampling period tends to zero, our established necessary and sufficient conditions are degenerated to the continuous-time protocol case, which are consistent with the existing result for the continuous-time case. Finally, the effectiveness of our established results is illustrated by a simple simulation example.
Keywords:  multi-agent systems      distributed control      consensus      observer      sampled data  
Received:  16 February 2016      Revised:  28 April 2016      Published:  05 October 2016
PACS:  02.30.Yy (Control theory)  
  05.45.Xt (Synchronization; coupled oscillators)  
  05.65.+b (Self-organized systems)  
Fund: Project supported by the Natural Science Foundation of Zhejiang Province, China (Grant No. LY13F030005) and the National Natural Science Foundation of China (Grant No. 61501331).
Corresponding Authors:  Wenhai Chen     E-mail:

Cite this article: 

Rusheng Wang(王如生), Lixin Gao(高利新), Wenhai Chen(陈文海), Dameng Dai(戴大蒙) Consensus for second-order multi-agent systems with position sampled data 2016 Chin. Phys. B 25 100202

[1] Ren W and Cao Y 2011 Distributed Coordination of Multi-agent Networks (London: Springer-Verlag)
[2] Cao J F, Ling Z H, Yuan Y F and Cao C 2014 Chin. Phys. B 23 070509
[3] Cavagna A, Giardina I, Ginelli F, Mora T, Piovani D, Tavarone R and Aleksandra M 2014 Phys. Rev. E 89 042707
[4] Zhou F, Wang Z J and Fan N J 2015 Chin. Phys. B 24 020203
[5] Bai L, Chen F and Lan W Y 2015 Chin. Phys. B 24 090206
[6] Jadbabaie A, Lin J and Morse A S 2003 IEEE T. Automat. Control 48 988
[7] Vicsek T, Czirok A, Jacob E B, Cohen I and Schochet O 1995 Phys. Rev. Lett. 75 1226
[8] Hong Y, Hu J and Gao L 2006 Automatica 42 1177
[9] Hu J and Hong Y 2007 Physica A 374 853
[10] Yu W, Chen G and Cao M 2010 Automatica 46 1089
[11] Gao L, Zhu X and Chen W 2012 Int. J. Control Autom. 10 931
[12] Xu X, Chen S and Gao L 2015 Neurocomputing 256 297
[13] Cao J, Wu Z and Peng L 2016 Chin. Phys. B 25 058902
[14] Xiao F, Wang L and Chen T 2014 IEEE T. Automat. Control 59 756
[15] Su H and Chen M. Z Q 2015 IET Control Theory A 9 399
[16] Su H, Chen M. Z Q and Chen G 2015 Int. J. Robust Nonlin. 25 2375
[17] Su H, Jia G and Chen M Z Q 2015 J. Franklin I. 352 3504
[18] Hong Y and Wang X 2009 J. Syst. Sci. Complex. 22 722
[19] Gao L, Tang Y, Chen W and Zhang H 2011 Kybernetika 47 773
[20] Li Z, Duan Z, Chen G and Huang L 2010 IEEE T. Circuits-I 57 213
[21] Zhang H, Lewis F L and Das A 2011 IEEE T. Automat. Control 56 1948
[22] Gao L, Xu B, Li J and Zhang H 2015 IET Control Theory A. 9 784
[23] Gao L, Cui Y, Xu X and Zhao Y 2015 J. Franklin I. 352 5173
[24] Cao Y and Ren W 2010 Int. J. Control 83 506
[25] Chen W and Li X 2014 Int. J. Robust Nonlin. 24 567
[26] Liu H, Xie G and Wang L 2010 Int. J. Robust Nonlin. 20 1706
[27] Yu W, Zhou L, Yu X, Liu J and Lu R 2011 Automatica 47 1496
[28] Yu W, Zheng W, Chen G, Ren W and Cao J 2013 IEEE T. Ind. Inform. 9 2137
[29] Gao Y and Wang L 2010 IET Control Theory A 4 945
[30] Wang S and Xie D 2012 IET Control Theory A 6 893
[31] Zhou B and Liao X 2014 Nonlinear Dynam. 78 555
[32] Wen G, Duan Z, Yu W and Chen G 2013 Int. J. Robust Nonlin. 23 602
[33] Park P C and Hahn V 1993 Stability Theory
[1] Hybrid-triggered consensus for multi-agent systems with time-delays, uncertain switching topologies, and stochastic cyber-attacks
Xia Chen(陈侠), Li-Yuan Yin(尹立远), Yong-Tai Liu(刘永泰), Hao Liu(刘皓). Chin. Phys. B, 2019, 28(9): 090701.
[2] Group consensus of multi-agent systems subjected to cyber-attacks
Hai-Yun Gao(高海云), Ai-Hua Hu(胡爱花), Wan-Qiang Shen(沈莞蔷), Zheng-Xian Jiang(江正仙). Chin. Phys. B, 2019, 28(6): 060501.
[3] Successive lag cluster consensus on multi-agent systems via delay-dependent impulsive control
Xiao-Fen Qiu(邱小芬), Yin-Xing Zhang(张银星), Ke-Zan Li(李科赞). Chin. Phys. B, 2019, 28(5): 050501.
[4] Energy-optimal problem of multiple nonholonomic wheeled mobile robots via distributed event-triggered optimization algorithm
Ying-Wen Zhang(张潆文), Jin-Huan Wang(王金环), Yong Xu(徐勇), De-Dong Yang(杨德东). Chin. Phys. B, 2019, 28(3): 030501.
[5] H couple-group consensus of stochastic multi-agent systems with fixed and Markovian switching communication topologies
Muyun Fang(方木云), Cancan Zhou(周灿灿), Xin Huang(黄鑫), Xiao Li(李晓), Jianping Zhou(周建平). Chin. Phys. B, 2019, 28(1): 010703.
[6] Mean-square composite-rotating consensus of second-order systems with communication noises
Li-po Mo(莫立坡), Shao-yan Guo(郭少岩), Yong-guang Yu(于永光). Chin. Phys. B, 2018, 27(7): 070504.
[7] Distance-based formation tracking control of multi-agent systems with double-integrator dynamics
Zixing Wu(吴梓杏), Jinsheng Sun(孙金生), Ximing Wang(王希铭). Chin. Phys. B, 2018, 27(6): 060202.
[8] Time-varying formation for general linear multi-agent systems via distributed event-triggered control under switching topologies
Jin-Huan Wang(王金环), Yu-Ling Xu(许玉玲), Jian Zhang(张建), De-Dong Yang(杨德东). Chin. Phys. B, 2018, 27(4): 040504.
[9] Leader-following consensus of discrete-time fractional-order multi-agent systems
Erfan Shahamatkhah, Mohammad Tabatabaei. Chin. Phys. B, 2018, 27(1): 010701.
[10] Tracking consensus for nonlinear heterogeneous multi-agent systems subject to unknown disturbances via sliding mode control
Xiang Zhang(张翔), Jin-Huan Wang(王金环), De-Dong Yang(杨德东), Yong Xu(徐勇). Chin. Phys. B, 2017, 26(7): 070501.
[11] Cooperative impulsive formation control for networked uncertain Euler-Lagrange systems with communication delays
Liang-ming Chen(陈亮名), Chuan-jiang Li(李传江), Yan-chao Sun(孙延超), Guang-fu Ma(马广富). Chin. Phys. B, 2017, 26(6): 068703.
[12] Improved control of distributed parameter systems using wireless sensor and actuator networks: An observer-based method
Zheng-Xian Jiang(江正仙), Bao-Tong Cui(崔宝同), Xu-Yang Lou(楼旭阳), Bo Zhuang(庄波). Chin. Phys. B, 2017, 26(4): 040201.
[13] Consensus of multiple autonomous underwater vehicles with double independent Markovian switching topologies and timevarying delays
Zhe-Ping Yan(严浙平), Yi-Bo Liu(刘一博), Jia-Jia Zhou(周佳加), Wei Zhang(张伟), Lu Wang(王璐). Chin. Phys. B, 2017, 26(4): 040203.
[14] Stochastic bounded consensus of second-order multi-agent systems in noisy environment
Hong-Wei Ren(任红卫), Fei-Qi Deng(邓飞其). Chin. Phys. B, 2017, 26(10): 100506.
[15] Asymptotic bounded consensus tracking of double-integratormulti-agent systems with bounded-jerk target based onsampled-data without velocity measurements
Shuang-Shuang Wu(吴爽爽), Zhi-Hai Wu(吴治海), Li Peng(彭力), Lin-Bo Xie(谢林柏). Chin. Phys. B, 2017, 26(1): 018903.
No Suggested Reading articles found!