Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(7): 078201    DOI: 10.1088/1674-1056/24/7/078201
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Instability of lithium bis(fluorosulfonyl)imide (LiFSI)–potassium bis(fluorosulfonyl)imide (KFSI) system with LiCoO2 at high voltage

Zhang Shu (张舒)a, Li Wen-Jun (李文俊)a, Ling Shi-Gang (凌仕刚)a, Li Hong (李泓)a, Zhou Zhi-Bin (周志彬)b, Chen Li-Quan (陈立泉)a
a Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China;
b Key Laboratory for Large-Format Battery Materials and System (Ministry of Education), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
Abstract  The cycling performance, impedance variation, and cathode surface evolution of the Li/LiCoO2 cell using LiFSI–KFSI molten salt electrolyte are reported. It is found that this battery shows poor cycling performance, with capacity retention of only about 67% after 20 cycles. It is essential to understand the origin of the instability. It is noticed that the polarization voltage and the impedance of the cell both increase slowly upon cycling. The structure and the properties of the pristine and the cycled LiCoO2 cathodes are investigated by x-ray diffraction (XRD), scanning electron microscopy (SEM), Raman spectroscopy, x-ray photoelectron spectroscopy (XPS), and transmission electron microscopy (TEM). It is found that the LiCoO2 particles are corroded by this molten salt electrolyte, and the decomposition by-product covers the surface of the LiCoO2 cathode after 20 cycles. Therefore, the surface side reaction explains the instability of the molten salt electrolyte with LiCoO2.
Keywords:  lithium ion battery      molten salt electrolyte      lithium bis(fluorosulfonyl)imide      potassium bis(fluorosulfonyl)imide  
Received:  14 April 2015      Revised:  28 April 2015      Accepted manuscript online: 
PACS:  82.47.Aa (Lithium-ion batteries)  
  65.40.gk (Electrochemical properties)  
  82.45.Fk (Electrodes)  
Fund: Project supported by the Beijing S&T Project, China (Grant No. Z13111000340000), the National Basic Research Program of China (Grant No. 2012CB932900), and the National Natural Science Foundation of China (Grants Nos. 51325206 and 51421002).
Corresponding Authors:  Li Hong     E-mail:  hli@iphy.ac.cn

Cite this article: 

Zhang Shu (张舒), Li Wen-Jun (李文俊), Ling Shi-Gang (凌仕刚), Li Hong (李泓), Zhou Zhi-Bin (周志彬), Chen Li-Quan (陈立泉) Instability of lithium bis(fluorosulfonyl)imide (LiFSI)–potassium bis(fluorosulfonyl)imide (KFSI) system with LiCoO2 at high voltage 2015 Chin. Phys. B 24 078201

[1] Hagiwara R, Tamaki K, Kubota K, Goto T and Nohira T 2008 J. Chem. Eng. Data 53 355
[2] Kubota K, Nohira T, Goto T and Hagiwara R 2008 J. Chem. Eng. Data 53 2144
[3] Kubota K, Nohira T, Goto T and Hagiwara R 2008 Electrochem. Commun. 10 1886
[4] Watarai A, Kubota K, Yamagata M, Goto T, Nohira T, Hagiwara R, Ui K and Kumagai N 2008 J. Power Sources 183 724
[5] Kubota K, Nohira T and Hagiwara R 2010 J. Chem. Eng. Data 55 2546
[6] Kubota K, Nohira T and Hagiwara R 2010 J. Chem. Eng. Data 55 3142
[7] Kubota K, Tamaki K, Nohira T, Goto T and Hagiwara R 2010 Electrochim. Acta 55 1113
[8] Han H B, Zhou S S, Zhang D J, Feng S W, Li L F, Liu K, Feng W F, Nie J, Li H, Huang X J, Armand M and Zhou Z B 2011 J. Power Sources 196 3623
[9] Kubota K, Nohira T and Hagiwara R 2012 Electrochim. Acta 66 320
[10] Kubota K and Matsumoto H 2013 ECS Trans. 50 339
[11] Kubota K and Matsumoto H 2013 J. Phys. Chem. C 117 18829
[12] Liu Y L, Zhou S S, Han H B, Li H, Nie J, Zhou Z B, Chen L Q and Huang X J 2013 Electrochim. Acta 105 524
[13] Xu F, Liu C, Feng W, Nie J, Li H, Huang X and Zhou Z 2014 Electrochim. Acta 135 217
[14] Xu K 2004 Chem. Rev. 104 4303
[15] Gross T and Hess C 2014 J. Power Sources 256 220
[16] Brooker M H and Bates J B 1971 J. Chem. Phys. 54 4788
[17] Dedryvére R, Martinez H, Leroy S, Lemordant D, Bonhomme F, Biensan P and Gonbeau D 2007 J. Power Sources 174 462
[18] Bettge M, Li Y, Sankaran B, Rago N D, Spila T, Haasch R T, Petrov I and Abraham D P 2013 J. Power Sources 233 346
[19] Daheron L, Dedryvere R and Martinez H 2008 Chem. Mater. 20 583
[20] Sugimoto T, Kikuta M, Ishiko E, Kono M and Ishikawa M 2008 J. Power Sources 183 436
[21] Howlett P C, Brack N, Hollenkamp A F, Forsyth M and MacFarlane D R 2006 J. Electrochem. Soc. 153 A595
[22] Andersson A M, Abraham D P, Haasch R, MacLaren S, Liu J and Amine K 2002 J. Electrochem. Soc. 149 A1358
[23] Budi A, Basile A, Opletal G, Hollenkamp A F, Best A S, Rees R J, Bhatt A I, O'Mullane A P and Russo S P 2012 J. Phys. Chem. C 116 19789
[24] Ota H, Sakata Y, Wang X, Sasahara J and Yasukawa E 2004 J. Electrochem. Soc. 151 A437
[25] Herlem M, Mathieu C and Herlem D 2004 Fuel 83 1665
[26] Leroy S, Martinez H, Dedryvére R, Lemordant D and Gonbeau D 2007 Appl. Surf. Sci. 253 4895
[27] Lu X, Sun Y, Jian Z, He X, Gu L, Hu Y S, Li H, Wang Z, Chen W, Duan X, Chen L, Maier J, Tsukimoto S and Ikuhara Y 2012 Nano Lett. 12 6192
[1] Lithium ion batteries cathode material: V2O5
Baohe Yuan(袁保合), Xiang Yuan(袁祥), Binger Zhang(张冰儿), Zheng An(安政), Shijun Luo(罗世钧), and Lulu Chen(陈露露). Chin. Phys. B, 2022, 31(3): 038203.
[2] DFT study of solvation of Li + /Na + in fluoroethylene carbonate/vinylene carbonate/ethylene sulfite solvents for lithium/sodium-based battery
Qi Liu(刘琦, Guoqiang Tan(谭国强), Feng Wu(吴锋), Daobin Mu(穆道斌), and Borong Wu(吴伯荣). Chin. Phys. B, 2021, 30(3): 038203.
[3] Performance of n-type silicon/silver composite anode material in lithium ion batteries: A study on effect of work function matching degree
Guo-Jun Xu(徐国军), Chen-Xin Jin(金晨鑫), Kai-Jie Kong(孔凯捷), Xi-Xi Yang(杨西西), Zhi-Hao Yue(岳之浩), Xiao-Min Li(李晓敏), Fu-Gen Sun(孙福根), Hai-Bin Huang(黄海宾), Lang Zhou(周浪). Chin. Phys. B, 2018, 27(10): 108201.
[4] Gas treatment protection of metallic lithium anode
Wen-jun Li(李文俊), Quan Li(李泉), Jie Huang(黄杰), Jia-yue Peng(彭佳悦), Geng Chu(褚赓), Ya-xiang Lu(陆雅翔), Jie-yun Zheng(郑杰允), Hong Li(李泓). Chin. Phys. B, 2017, 26(8): 088202.
[5] Conductivity and applications of Li-biphenyl-1, 2-dimethoxyethane solution for lithium ion batteries
Geng Chu(褚赓), Bo-Nan Liu(刘柏男), Fei Luo(罗飞), Wen-Jun Li(李文俊), Hao Lu(陆浩), Li-Quan Chen(陈立泉), Hong Li(李泓). Chin. Phys. B, 2017, 26(7): 078201.
[6] First-principle study on phase Al0.8Ni3Sn0.2 in Sn-Ni-Al alloy as anode for lithium ion battery
Huang Zhao-Wen(黄钊文), Hu She-Jun(胡社军), Hou Xian-Hua(侯贤华), Zhao Ling-Zhi(赵灵智), Ru Qiang(汝强),Li Wei-Shan(李伟善), and Zhang Zhi-Wen(张志文). Chin. Phys. B, 2010, 19(11): 117101.
[7] First-principles study of interphase Ni3Sn in Sn--Ni alloy for anode of lithium ion battery
Hou Xian-Hua(侯贤华), Hu She-Jun(胡社军), Li Wei-Shan(李伟善), Ru Qiang(汝强), Yu Hong-Wen(余洪文), and Huang Zhao-Wen(黄钊文). Chin. Phys. B, 2008, 17(9): 3422-3427.
No Suggested Reading articles found!