Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(7): 077103    DOI: 10.1088/1674-1056/24/7/077103
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Enhanced coercivity and remanence of PrCo5 nanoflakes prepared by surfactant-assisted ball milling with heat-treated starting powder

Zuo Wen-Liang (左文亮), Zhao Xin (赵鑫), Xiong Jie-Fu (熊杰夫), Shang Rong-Xiang (商荣翔), Zhang Ming (章明), Hu Feng-Xia (胡凤霞), Sun Ji-Rong (孙继荣), Shen Bao-Gen (沈保根)
State Key Laboratory of Magnetism, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
Abstract  

PrCo5 nanoflakes with strong texture and high coercivity of 8.15 kOe were prepared by surfactant-assisted ball milling with heat-treated starting powder. The thickness and length of the as-milled nanoflakes are mainly in the ranges of 50–100 nm and 0.5–3 μm, respectively. The x-ray diffraction patterns demonstrate that the heat treatment can increase the single phase and crystallinity of the PrCo5 compound, and combined with the demagnetization curves, indicate that the single phase and crystallinity are important for preparing high-coercivity and strong-textured rare earth permanent magnetic nanoflakes. In addition, the coercivity mechanism of the as-milled PrCo5 nanoflakes is studied by the angle dependence of coercivity for an aligned sample and the field dependence of coercivity, isothermal (IRM) and dc demagnetizing (DCD) remanence curves for an unaligned sample. The results indicate that the coercivity is dominated by co-existing mechanisms of pinning and nucleation. Furthermore, exchange coupling and dipolar coupling also co-exist in the sample.

Keywords:  coercivity mechanism      textured PrCo5 nanoflakes      surfactant-assisted ball milling      heat treatment  
Received:  03 March 2015      Revised:  30 March 2015      Accepted manuscript online: 
PACS:  71.20.Eh (Rare earth metals and alloys)  
  75.75.Cd (Fabrication of magnetic nanostructures)  
  75.30.Gw (Magnetic anisotropy)  
  75.60.Jk (Magnetization reversal mechanisms)  
Fund: 

Project supported by the National Basic Research Program of China (Grant No. 2014CB643702), the National Natural Science Foundation of China (Grant No. 51401235), and Beijing Natural Science Foundation, China (Grant No. 2152034).

Corresponding Authors:  Zuo Wen-Liang, Shen Bao-Gen     E-mail:  wlzuo@iphy.ac.cn;shenbg@aphy.iphy.ac.cn

Cite this article: 

Zuo Wen-Liang (左文亮), Zhao Xin (赵鑫), Xiong Jie-Fu (熊杰夫), Shang Rong-Xiang (商荣翔), Zhang Ming (章明), Hu Feng-Xia (胡凤霞), Sun Ji-Rong (孙继荣), Shen Bao-Gen (沈保根) Enhanced coercivity and remanence of PrCo5 nanoflakes prepared by surfactant-assisted ball milling with heat-treated starting powder 2015 Chin. Phys. B 24 077103

[1] Sun S, Murray C B, Weller D, Folks L and Moser A 2000 Science 287 1989
[2] Zeng H, Li J, Liu J P, Wang Z L and Sun S 2002 Nature 420 395
[3] Akdogan N G, Hadjipanayis G C and Sellmyer D J 2009 IEEE Trans. Magn. 45 4417
[4] Chakka V M, Altuncevahir B, Jin Z Q, Li Y and Liu J P 2006 J. Appl. Phys. 99 08E912
[5] Zuo W L, Liu R M, Zheng X Q, Wu R R, Hu F X, Sun J R and Shen B G 2014 J. Appl. Phys. 115 17A728
[6] Rong C B, Nguyen V V and Liu J P 2010 J. Appl. Phys. 107 09A717
[7] Yu N J, Pan M X, Zhang P Y, Ge H L and Wu Q 2015 J. Magn. Magn. Mater. 378 107
[8] Wang W Q, Hu X J, Li X H, Huang G W, Zhang Y M and Zhang X Y 2014 J. Alloys Compd. 589 283
[9] Nie J W, Han X H, Du J, Xia W X, Zhang J, Guo Z H, Yan A R, Li W and Liu J P 2013 J. Magn. Magn. Mater. 347 116
[10] Shen Y, Huang M Q, Higgins A K, Liu S, Horwath J C and Chen C H 2010 J. Appl. Phys. 107 09A722
[11] Fernengel W, Lehnert A, Katter M, Rodewald W and Wall B 1996 J. Magn. Magn. Mater. 157/158 19
[12] Bernasconi J, Strässler S and Perkins R S 1975 AIP Conference Proceedings 24 761
[13] Kronmüller H, Durst K D and Martinek G 1987 J. Magn. Magn. Mater. 69 149
[14] Elbaz D, Givord D, Hirosawa S, Missell F P, Rossignol M F and VillasBoas V 1991 J. Appl. Phys. 69 5492
[15] Gao R W, Zhang D H, Zhang Y M, Li W, Wang Y S and Yu X J 2001 J. Magn. Magn. Mater. 224 125
[16] Panagiotopoulos I, Gjoka M and Niarchos D 2004 J. Magn. Magn. Mater. 279 389
[17] Bance S, Oezelt H, Schrefl T, Ciuta G, Dempsey N M, Givord D, Winklhofer M, Hrkac G, Zimanyi G, Gutfleisch O, Woodcock T G, Shoji T, Yano M, Kato A and Manabe A 2014 Appl. Phys. Lett. 104 182408
[18] Aharoni A 1997 J. Appl. Phys. 82 1281
[19] Thomson T and O'Grady K 1997 J. Phys. D: Appl. Phys. 30 1566
[20] Wang J B, Liu Q F, Xue D S and Li F S 2004 Chin. Phys. Lett. 21 945
[21] Speliotis D E and Lynch W 1991 J. Appl. Phys. 69 4496
[22] Mitchler P D, Dan Dahlberg E, Engle E and Roshko R M 1995 IEEE Trans. Magn. 31 2499
[23] Garca-Otero J, Porto M and Rivas J 2000 J. Appl. Phys. 87 7376
[24] Ohtori H, Lwano K, Mitsumata C, Yano M, Kato A, Shoji T, Manabe A and Ono K 2014 J. Appl. Phys. 115 17A717
[25] Liu J P, Liu Y and Sellmyer D J 1998 J. Appl. Phys. 83 6608
[26] Zuo W L, Zhang M, Niu E, Shao X P, Hu F X, Sun J R and Shen B G 2015 J. Magn. Magn. Mater. 390 15
[1] CrAlGe: An itinerant ferromagnet with strong tunability by heat treatment
Zhaokun Dong(董昭昆), Zhen Wang(王振), Te Zhang(张特), Junsen Xiang(项俊森), Shuai Zhang(张帅), Lihua Liu(刘丽华), and Peijie Sun(孙培杰). Chin. Phys. B, 2022, 31(11): 117502.
[2] Development of ZnTe film with high copper doping efficiency for solar cells
Xin-Lu Lin(林新璐), Wen-Xiong Zhao(赵文雄), Qiu-Chen Wu(吴秋晨), Yu-Feng Zhang(张玉峰), Hasitha Mahabaduge, and Xiang-Xin Liu(刘向鑫). Chin. Phys. B, 2022, 31(10): 108802.
[3] Coercivity mechanisms in nanostructured permanent magnets
G P Zhao(赵国平), L Zhao(赵莉), L C Shen(沈来川), J Zou(邹静), L Qiu(邱雷). Chin. Phys. B, 2019, 28(7): 077505.
[4] Heat treatment on phase evolution of Bi-2223 precursor powder prepared by spray pyrolysis method
Li-Jun Cui(崔利军), Ping-Xiang Zhang(张平祥), Jin-Shan Li(李金山), Guo Yan(闫果), Yong Feng(冯勇), Xiang-Hong Liu(刘向宏), Jian-Feng Li(李建峰), Xi-Feng Pan(潘熙峰), Fan Yang(杨帆), Sheng-Nan Zhang(张胜楠), Xiao-Bo Ma(马晓波), Guo-Qing Liu(刘国庆). Chin. Phys. B, 2019, 28(4): 047401.
[5] Anisotropic nanocomposite soft/hard multilayer magnets
Wei Liu(刘伟), Zhidong Zhang(张志东). Chin. Phys. B, 2017, 26(11): 117502.
[6] Preparation and characterization of Sr0.5Ba0.5Nb2O6 glass-ceramic on piezoelectric properties
Shan Jiang(姜珊), Xuan-Ming Wang(王炫明), Jia-Yu Li(李佳宇),Yong Zhang(张勇), Tao Zheng(郑涛), Jing-Wen Lv(吕景文). Chin. Phys. B, 2016, 25(3): 037701.
[7] The effects of heat treatment on microfluidic devices fabricated in silica glass by femtosecond lasers
Li Yan(李岩) and Qu Shi-Liang(曲士良) . Chin. Phys. B, 2012, 21(3): 034208.
[8] Effects of high-pressure heat treatment on the solid-state phase transformation and microstructures of Cu61.13Zn33.94Al4.93 alloys
Wang Hai-Yan(王海燕), Liu Jian-Hua(刘建华), Peng Gui-Rong(彭桂荣), and Wang Wen-Kui(王文魁). Chin. Phys. B, 2010, 19(9): 096203.
[9] The magnetization reversal behaviour for SmCo6.8Zr0.2 and SmCo6.8Zr0.2/$\alpha$ -(Fe,Co) nanocrystalline magnets at low temperature
Liu Zhuang(刘壮), Chen Ren-Jie(陈仁杰), Li Dong(李东), and Yan Ar-Ru(闫阿儒). Chin. Phys. B, 2010, 19(6): 067504.
[10] OH-1 absorption bands of LiNbO3 with varying composition
Chen Hong-Jian(陈洪建), Shi Li-Hong(师丽红), Yan Wen-Bo(阎文博), Chen Gui-Feng(陈贵锋), Shen Jun(沈俊), and Li Yang-Xian(李养贤). Chin. Phys. B, 2009, 18(6): 2372-2376.
[11] Magnetic properties and coercivity mechanism of precipitation-hardened Gd-Co based ribbons
Rong Chuan-Bing (荣传兵), Zhang Jian (张健), Du Xiao-Bo (杜晓波), Zhang Hong-Wei (张宏伟), Zhang Shao-Ying (张绍英), Shen Bao-Gen (沈保根). Chin. Phys. B, 2004, 13(7): 1144-1148.
[12] MAGNETIC VISCOSITY OF NANOCOMPOSITE Sm-Fe-Cu-Zr-Ga-C RIBBONS
Zhang Shao-ying (张绍英), Zhang Hong-wei (张宏伟), Zhao Peng (赵鹏), Shen Bao-gen (沈保根), F. R. de Boer, K. H. J. Buschow. Chin. Phys. B, 2000, 9(7): 541-544.
No Suggested Reading articles found!