Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(12): 127803    DOI: 10.1088/1674-1056/24/12/127803
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Dielectric and magnetic properties of (Zn, Co) co-doped SnO2 nanoparticles

Rajwali Khan, Fang Ming-Hu
Department of Physics, Zhejiang University, Hangzhou 310027, China
Abstract  Polycrystalline samples of (Zn, Co) co-doped SnO2 nanoparticles were prepared using a co-precipitation method. The influence of (Zn, Co) co-doping on electrical, dielectric, and magnetic properties was studied. All of the (Zn, Co) co-doped SnO2 powder samples have the same tetragonal structure of SnO2. A decrease in the dielectric constant was observed with the increase of Co doping concentration. It was found that the dielectric constant and dielectric loss values decrease, while AC electrical conductivity increases with doping concentration and frequency. Magnetization measurements revealed that the Co doping SnO2 samples exhibits room temperature ferromagnetism. Our results illustrate that (Zn, Co) co-doped SnO2 nanoparticles have an excellent dielectric, magnetic properties, and high electrical conductivity than those reported previously, indicating that these (Zn, Co) co-doped SnO2 materials can be used in the field of the ultrahigh dielectric material, high frequency device, and spintronics.
Keywords:  SnO2 nanoparticles      dielectric property      magnetic properties of nanoparticles      ferromagnetism at room temperature     
Received:  05 April 2015      Published:  05 December 2015
PACS:  78.67.Bf (Nanocrystals, nanoparticles, and nanoclusters)  
  52.25.M  
  75.75.-c (Magnetic properties of nanostructures)  
  75.50.Gg (Ferrimagnetics)  
Fund: Project supported by the National Basic Research Program of China (Grant Nos. 2015CB921004, 2012CB821404, and 2011CBA00103) and the National Natural Science Foundation of China (Grant Nos. 11374261 and 11204059).
Corresponding Authors:  Fang Ming-Hu     E-mail:  mhfang@zju.edu.cn

Cite this article: 

Rajwali Khan, Fang Ming-Hu Dielectric and magnetic properties of (Zn, Co) co-doped SnO2 nanoparticles 2015 Chin. Phys. B 24 127803

[1] Wolf S A, Awschalom D D, Buhrman R A, Daughton J M and Molnar V S 2001 Science 294 1488
[2] Burch K, Awschalom D D and Basov D N 2008 J. Magn. Magn. Mater. 320 3207
[3] Punnoose A, Reddy K M, Hays J, Thurber A and Engelhard M H 2006 Appl. Phys. Lett. 89 112509
[4] Liu X, Cheng, Liu H X, Liu J Y Y, Liu X, Ga M, Wei M, Zhang X and Jiang Y 2013 Phys. E. Low Dimensional Systems & Nanostructures 47 1
[5] Choudhury B and Choudhury A 2013 Curr. Appl. Phys. 13 1025
[6] Paek S M, Yoo E and Honma 2009 Nano. Lett. 72 23
[7] Chen J S and Lou X D 2013 Small Weinheim an der Bergstrasse Germany 9 1877-93
[8] Bernardi, Soledade L E, Santos I A, Leite E R, Longo E and Varela J A 2002 Thin Solid Films 405 228
[9] Chopra K L, Major S and Pandya D K 1983 Thin Solid Films 102 4
[10] Aoki A and Sasakura H 1970 Jpn. J. Appl. Phys. 582 5
[11] McDowell M G, Sanderson R J and Hill I G 2008 Appl. Phys. Lett. 92 013502
[12] Minami T 2000 MRS Bull. 38 25
[13] David L Y, Helio M, Anfa Y Y and Timothy J C 2002 J. Appl. Phys. 92
[14] Thangaraju B 2002 Thin Solid Films 402 71
[15] Zhang Y, Yu K, Li G, Peng D, Zhang Q, Xu F, Bai F, Ouyang S and Zhu Z 2006 Mater. Lett. 60 3109
[16] Delgado F P, Flores F P, Yoshida M M, Elguezabal A A, Santiago P, Diaz R and Ascencio J A 2005 Nanotechnology 16 688
[17] Cheng B, Russell J M, Shi W, Zhang L and Samulski E T 2004 J. Am. Chem. Soc. 126 5972
[18] Punnoose A, Hays J, Thurber A, EngelhardMH,Wang R K K C, Shutthanandan V and Thevuthasan S 2005 Phys. Rev. B 72 054402
[19] Zhanga H, Wangb D, Hua V, Kangb X and Liub H 2013 Sensors and Actuators B 184 288
[20] Liu X, Iqbal J, ZhangbenW, Bo H and Ronghai Y 2010 J. Phys. Chem. C 114 4790
[21] Arag F H, Coaquira J A H, Hidalgo P, Brito S L M, Gouvea D and Castro R H R 2010 J. Phys.: Condens. Matter. 22 496003
[22] Zhang H W, Zhi R W, Qiang Z L and Guo Y D 2007 Mater. Lett. 61 3605
[23] Mandal S K, Das A K, Natha T K, Karmakar D and Satpati B 2006 J. Appl. Phys. 100 104315
[24] Mohanty S and Ravi S 2012 J. Supercond. Nov. Magn. 25 1017
[25] Subramanian M, Thakur P, Tanemura M, Hihara T, Ganesan V, Soga T, Chae K H, Jayavel R and Jimbo T, et al. 2010 J. Appl. Phys. 108 053904
[26] Hays J, Punnoose A, Engelhard A M H, Peloquin J and Reddy K M 2005 Phys. Rev. B 72 075203
[27] Ogale S B, Choudhary R J, Buban J P, Lof S E, Shinde S R, Kale S N, Kulkarni V N, Lanci J H C, Simpson J R, Browning N D, Sarma S D, Drew H D, Greene R L and Venkatesan T 2003 Phys. Rev. Lett. 1 07720
[28] Punnoosea A, Hays J and Gopal V S 2004 Appl. Phys. Lett. 85
[29] Yoshidaa H K and Sato K 2003 J. Phys. Chem. Solids 64 1447
[30] Dietl T, Ohno H and Matsukura F 2001 Phys. Rev. B 63 195205
[31] Parthibavarman M, Vallalperuman K, Sathishkumar S, Durairaj M and Thavamani K 2014 J. Mater. Sci.: Mater Electron. 25 730
[32] Adnan R, Razana N A, Rahman I A and Farrukh M A 2010 J. Chin. Chem. Soc. 57 222
[33] Chen S, Zhao X, Xie H H, Liu J, Duan L, Ba X and Zha J 2012 Appl. Surf. Sci. 258 3255
[34] Vijayalakshmi S, Venkataraj S, Subramanian M and Jayavel R 2008 Appl. Phys. Lett. 105 022406
[35] Chou X, Zhai J, Jiang H and Yao X 2007 J. Appl. Phys. 102 084106
[36] Chenari H M, Hassanzadeh A, Golzan M M, Sedghi H and Talebian M 2011 Curr. Appl. Phys. 11 409
[37] Symth C P 1955 Dielectric Behavior and Structure (New York: McGraw-Hill) p. 400
[38] Nomura K, Okabayashi J, Okamura K and Yamada 2011 J. Appl. Phys. 110 083901
[1] Optical-induced dielectric tunability properties of DAST crystal in THz range
De-Gang Xu(徐德刚), Xian-Li Zhu(朱先立), Yu-Ye Wang(王与烨), Ji-Ning Li(李吉宁), Yi-Xin He(贺奕俽), Zi-Bo Pang(庞子博), Hong-Juan Cheng(程红娟), Jian-Quan Yao(姚建铨). Chin. Phys. B, 2019, 28(12): 127701.
[2] Zn-Cu-codoped SnO2 nanoparticles:Structural, optical, and ferromagnetic behaviors
Syed Zulfiqar, Zainab Iqbal, Jianguo Lü(吕建国). Chin. Phys. B, 2017, 26(12): 126104.
[3] Dielectric and piezoelectric properties of (110) oriented Pb(Zr1-xTix)O3 thin films
Jian-Hua Qiu(邱建华), Zhi-Hui Chen(陈智慧), Xiu-Qin Wang(王秀琴), Ning-Yi Yuan(袁宁一), Jian-Ning Ding(丁建宁). Chin. Phys. B, 2016, 25(5): 057701.
[4] Microwave dielectric properties of Nextel-440 fiber fabrics with pyrolytic carbon coatings in the temperature range from room temperature to 700 ℃
Song Hui-Hui, Zhou Wan-Cheng, Luo Fa, Qing Yu-Chang, Chen Ma-Lin. Chin. Phys. B, 2015, 24(8): 088107.
[5] Piezoelectric and electro—optic properties of tetragonal (1-x)Pb(Mg1/3Nb2/3)O3xPbTiO3 single crystals by phenomenological theory
Qiu Jian-Hua, Wang Xiu-Qin, Yuan Ning-Yi, Ding Jian-Ning. Chin. Phys. B, 2015, 24(7): 077701.
[6] Multiferroic properties in terbium orthoferrite
Song Yu-Quan, Zhou Wei-Ping, Fang Yong, Yang Yan-Ting, Wang Liao-Yu, Wang Dun-Hui, Du You-Wei. Chin. Phys. B, 2014, 23(7): 077505.
[7] Al-doping-induced magnetocapacitance in the multiferroic CuCrS2
Liu Rong-Deng, Liu Yun-Tao, Chen Dong-Feng, He Lun-Hua, Yan Li-Qin, Wang Zhi-Cui, Sun Yang, Wang Fang-Wei. Chin. Phys. B, 2013, 22(2): 027507.
[8] Investigation on dependence of BiFeO3 dielectric property on oxygen content
Lou Yan-Hui, Song Gui-Lin, Chang Fang-Gao, Wang Zhao-Kui. Chin. Phys. B, 2010, 19(7): 077702.
[9] Electrical, dielectric and surface wetting properties of multi-walled carbon nanotubes/nylon-6 nanocomposites
Long Yun-Ze, Li Meng-Meng, Sui Wan-Mei, Kong Qing-Shan, Zhang Lei. Chin. Phys. B, 2009, 18(3): 1221-1226.
[10] A possible coupling mechanism between magnetism and dielectric properties in EuTiO3
Jiang Qing, Wu Hua. Chin. Phys. B, 2002, 11(12): 1303-1306.
No Suggested Reading articles found!