Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(10): 100202    DOI: 10.1088/1674-1056/24/10/100202
GENERAL Prev   Next  

Analysis of elastoplasticity problems using an improved complex variable element-free Galerkin method

Cheng Yu-Mina, Liu Chaoa, Bai Fu-Nonga, Peng Miao-Juanb
a Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai 200072, China;
b Department of Civil Engineering, Shanghai University, Shanghai 200072, China
Abstract  

In this paper, based on the conjugate of the complex basis function, a new complex variable moving least-squares approximation is discussed. Then using the new approximation to obtain the shape function, an improved complex variable element-free Galerkin (ICVEFG) method is presented for two-dimensional (2D) elastoplasticity problems. Compared with the previous complex variable moving least-squares approximation, the new approximation has greater computational precision and efficiency. Using the penalty method to apply the essential boundary conditions, and using the constrained Galerkin weak form of 2D elastoplasticity to obtain the system equations, we obtain the corresponding formulae of the ICVEFG method for 2D elastoplasticity. Three selected numerical examples are presented using the ICVEFG method to show that the ICVEFG method has the advantages such as greater precision and computational efficiency over the conventional meshless methods.

Keywords:  meshless method      complex variable moving least-squares approximation      improved complex variable element-free Galerkin method      elastoplasticity  
Received:  24 March 2015      Revised:  05 May 2015      Published:  05 October 2015
PACS:  02.60.Cb (Numerical simulation; solution of equations)  
  02.70.-c (Computational techniques; simulations)  
  02.90.+p (Other topics in mathematical methods in physics)  
  46.15.-x (Computational methods in continuum mechanics)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant Nos. 11171208 and U1433104).

Corresponding Authors:  Cheng Yu-Min     E-mail:  ymcheng@shu.edu.cn

Cite this article: 

Cheng Yu-Min, Liu Chao, Bai Fu-Nong, Peng Miao-Juan Analysis of elastoplasticity problems using an improved complex variable element-free Galerkin method 2015 Chin. Phys. B 24 100202

[1] Belytschko T, Krongauz Y, Organ D Fleming M and Krysl P 1996 Comput. Methods Appl. Mech. Eng. 139 3
[2] Li Q H, Chen S S and Kou G X 2011 J. Comput. Phys. 230 2736
[3] Tatari M and Ghasemi F 2014 J. Comput. Phys. 258 634
[4] Lancaster P and Salkauskas K 1981 Math. Comput. 37 141
[5] Lu Y Y, Belytschko T and Gu L 1994 Comput. Methods Appl. Mech. Eng. 113 397
[6] Cheng Y M, Liew K M and Kitipornchai S 2009 Int. J. Numer. Methods Eng. 78 1258
[7] Cheng Y M and Chen M J 2003 Acta Mech. Sin. 35 181 (in Chinese)
[8] Cheng Y M and Peng M J 2005 Sci. China Ser. G-Phys., Mech. Astron. 48 641
[9] Liew K M, Cheng Y M and Kitipornchai S 2006 Int. J. Numer. Methods Eng. 65 1310
[10] Kitipornchai S, Liew K M and Cheng Y M 2005 Comput. Mech. 36 13
[11] Liew K M, Cheng Y M and Kitipornchai S 2005 Int. J. Numer. Methods Eng. 64 1610
[12] Peng M J and Cheng Y M 2009 Engineering Analysis with Boundary Elements 33 77
[13] Sun Y Z, Zhang Z, Kitipronchai S and Liew K M 2006 Int. J. Eng. Sci. 44 37
[14] Liew K M, Sun Y Z and Kitipornchai S 2007 Int. J. Numer. Methods Eng. 69 729
[15] Sun Y Z and Liew K M 2012 Int. J. Numer. Methods Eng. 91 1184
[16] Miers L S and Telles J C F 2008 Int. J. Numer. Methods Eng. 76 1090
[17] Zhang Z, Liew K M and Cheng Y M 2008 Engineering Analysis with Boundary Elements 32 100
[18] Zhang Z, Liew K M, Cheng Y M and Lee Y Y 2008 Engineering Analysis with Boundary Elements 32 241
[19] Zhang Z, Zhao P and Liew K M 2009 Engineering Analysis with Boundary Elements 33 547
[20] Zhang Z, Zhao P and Liew K M 2009 Comput. Mech. 44 273
[21] Zhang Z, Li D M, Cheng Y M and Liew K M 2012 Acta Mech. Sin. 28 808
[22] Zhang Z, Wang J F, Cheng Y M and Liew K M 2013 Sci. China: Phys. Mech. Astron. 56 1568
[23] Zhang Z, Cheng Y M and Liew K M 2013 Engineering Analysis with Boundary Elements 37 1576
[24] Dai B D and Cheng Y M 2010 Int. J. Appl. Mech. 2 421
[25] Ren H P, Cheng Y M and Zhang W 2009 Chin. Phys. B 18 4065
[26] Ren H P and Cheng Y M 2011 Int. J. Appl. Mech. 3 735
[27] Ren H P and Cheng Y M 2012 Engineering Analysis with Boundary Elements 36 873
[28] Ren H P, Cheng Y M and Zhang W 2010 Sci. China Ser. G-Phys. Mech. Astron. 53 758
[29] Wang J F, Sun F X and Cheng Y M 2012 Chin. Phys. B 21 090204
[30] Sun F X, Wang J F and Cheng Y M 2013 Chin. Phys. B 22 120203
[31] Wang J F, Wang J, Sun F X and Cheng Y M 2013 Int. J. Comput. Methods 10 1350043
[32] Cheng Y M and Li J H 2005 Acta Phys. Sin. 54 4463(in Chinese)
[33] Cheng Y M, Peng M J and Li J H 2005 Acta Mech. Sin. 37 719 (in Chinese)
[34] Cheng Y M and Li J H 2006 Sci. China Ser. G-Phys. Mech. Astron. 49 46
[35] Liew K M, Feng C, Cheng Y M and Kitipornchai S 2007 Int. J. Numer. Methods Eng. 70 46
[36] Peng M J, Liu P and Cheng Y M 2009 Int. J. Appl. Mech. 1 367
[37] Peng M J, Li D M and Cheng Y M 2011 Engineering Structures 33 127
[38] Cheng Y M, Li R X and Peng M J 2012 Chin. Phys. B 21 090205
[39] Cheng Y M, Wang J F and Li R X 2012 Int. J. Appl. Mech. 4 1250042
[40] Liew K M and Cheng Y M 2009 Comput. Methods Appl. Mech. Eng. 198 3925
[41] Gao H F and Cheng Y M 2009 Acta Mech. Sin. 41 480 (in Chinese)
[42] Gao H F and Cheng Y M 2010 Int. J. Comput. Methods 7 55
[43] Ren H P, Cheng J and Huang A X 2012 Appl. Math. Comput. 219 1724
[44] Ren H P and Cheng Y M 2012 Int. J. Comput. Mater. Sci. Eng. 1 1250011
[45] Chen L and Cheng Y M 2008 Acta Phys. Sin. 57 1(in Chinese)
[46] Chen L and Cheng Y M 2008 Acta Phys. Sin. 57 6047(in Chinese)
[47] Chen L and Cheng Y M 2010 Chin. Phys. B 19 090204
[48] Chen L and Cheng Y M 2010 Sci. China: Phys. Mech. Astron. 53 954
[49] Weng Y J and Cheng Y M 2013 Chin. Phys. B 22 090204
[50] Chen L, Liew K M and Cheng Y M 2010 Interaction and Multiscale Mechanics, An International Journal 3 277
[51] Chen L, Ma H P and Cheng Y M 2013 Chin. Phys. B 22 050202
[52] Bai F N, Li D M, Wang J F and Cheng Y M 2012 Chin. Phys. B 21 020204
[53] Cheng Y M, Wang J F and Bai F N 2012 Chin. Phys. B 21 090203
[54] Wang J F and Cheng Y M 2012 Chin. Phys. B 21 120206
[55] Wang J F and Cheng Y M 2013 Chin. Phys. B 22 030208
[56] Li D M, Bai F N, Cheng Y M and Liew K M 2012 Comput. Methods Appl. Mech. Eng. 233-236 1
[57] Barry W and Saigal S 1999 Int. J. Numer. Methods Eng. 46 671
[58] Kargarnovin M H, Toussi H E and Fariborz S J 2004 Comput. Mech. 33 206
[59] Liew K M Wu Y C and Zou G P 2002 Int. J. Numer. Methods Eng. 55 669
[60] Chen Y, Eskandarian A, Oskard M and Lee J D 2004 Theoretical and Applied Fracture Mechanics 41 83
[61] Yeon J and Youn S 2005 Intternational Journal of Solids and Structures 42 4030
[62] Boudaia E, Bousshine L, Saxce G and Chaaba A 2009 Int. J. Appl. Mech. 1 631
[1] Improved reproducing kernel particle method for piezoelectric materials
Ji-Chao Ma(马吉超), Gao-Feng Wei(魏高峰), Dan-Dan Liu(刘丹丹). Chin. Phys. B, 2018, 27(1): 010201.
[2] Topology optimization using the improved element-free Galerkin method for elasticity
Yi Wu(吴意), Yong-Qi Ma(马永其), Wei Feng(冯伟), Yu-Min Cheng(程玉民). Chin. Phys. B, 2017, 26(8): 080203.
[3] Meshless analysis of an improved element-free Galerkin method for linear and nonlinear elliptic problems
Yao-Zong Tang(唐耀宗), Xiao-Lin Li(李小林). Chin. Phys. B, 2017, 26(3): 030203.
[4] Two-dimensional fracture analysis of piezoelectric material based on the scaled boundary node method
Shen-Shen Chen(陈莘莘), Juan Wang(王娟), Qing-Hua Li(李庆华). Chin. Phys. B, 2016, 25(4): 040203.
[5] Solving unsteady Schrödinger equation using the improved element-free Galerkin method
Rong-Jun Cheng(程荣军) and Yu-Min Cheng(程玉民). Chin. Phys. B, 2016, 25(2): 020203.
[6] Hybrid natural element method for large deformation elastoplasticity problems
Ma Yong-Qi, Zhou Yan-Kai. Chin. Phys. B, 2015, 24(3): 030204.
[7] Hybrid natural element method for viscoelasticity problems
Zhou Yan-Kai, Ma Yong-Qi, Dong Yi, Feng Wei. Chin. Phys. B, 2015, 24(1): 010204.
[8] A meshless algorithm with moving least square approximations for elliptic Signorini problems
Wang Yan-Chong, Li Xiao-Lin. Chin. Phys. B, 2014, 23(9): 090202.
[9] Shear viscosity of aluminum studied by shock compression considering elasto-plastic effects
Ma Xiao-Juan, Hao Bin-Bin, Ma Hai-Xia, Liu Fu-Sheng. Chin. Phys. B, 2014, 23(9): 096204.
[10] A meshless method based on moving Kriging interpolation for a two-dimensional time-fractional diffusion equation
Ge Hong-Xia, Cheng Rong-Jun. Chin. Phys. B, 2014, 23(4): 040203.
[11] Analysis of variable coefficient advection–diffusion problems via complex variable reproducing kernel particle method
Weng Yun-Jie, Cheng Yu-Min. Chin. Phys. B, 2013, 22(9): 090204.
[12] A complex variable meshless local Petrov-Galerkin method for transient heat conduction problems
Wang Qi-Fang, Dai Bao-Dong, Li Zhen-Feng. Chin. Phys. B, 2013, 22(8): 080203.
[13] A meshless Galerkin method with moving least square approximations for infinite elastic solids
Li Xiao-Lin, Li Shu-Ling. Chin. Phys. B, 2013, 22(8): 080204.
[14] Analysis of the generalized Camassa and Holm equation with the improved element-free Galerkin method
Cheng Rong-Jun, Wei Qi. Chin. Phys. B, 2013, 22(6): 060209.
[15] An element-free Galerkin (EFG) method for generalized Fisher equations (GFE)
Shi Ting-Yu, Cheng Rong-Jun, Ge Hong-Xia. Chin. Phys. B, 2013, 22(6): 060210.
No Suggested Reading articles found!