Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(1): 010204    DOI: 10.1088/1674-1056/24/1/010204
GENERAL Prev   Next  

Hybrid natural element method for viscoelasticity problems

Zhou Yan-Kaia, Ma Yong-Qia b, Dong Yic, Feng Weia
a Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai 200072, China;
b Department of Mechanics, Shanghai University, Shanghai 200444, China;
c Shanghai Industrial Urban Development Group Limited, Shanghai 200030, China
Abstract  A hybrid natural element method (HNEM) for two-dimensional viscoelasticity problems under the creep condition is proposed. The natural neighbor interpolation is used as the test function, and the discrete equation system of the HNEM for viscoelasticity problems is obtained using the Hellinger-Reissner variational principle. In contrast to the natural element method (NEM), the HNEM can directly obtain the nodal stresses, which have higher precisions than those obtained using the moving least-square (MLS) approximation. Some numerical examples are given to demonstrate the validity and superiority of this HNEM.
Keywords:  hybrid natural element method      viscoelasticity      Hellinger-Reissner variational principle      meshless method  
Received:  24 August 2014      Revised:  12 September 2014      Published:  05 January 2015
PACS:  02.60.Cb (Numerical simulation; solution of equations)  
  02.60.Lj (Ordinary and partial differential equations; boundary value problems)  
  46.35.+z (Viscoelasticity, plasticity, viscoplasticity)  
Fund: Project supported by the Natural Science Foundation of Shanghai, China (Grant No. 13ZR1415900).
Corresponding Authors:  Ma Yong-Qi     E-mail:  mayq@staff.shu.edu.cn

Cite this article: 

Zhou Yan-Kai, Ma Yong-Qi, Dong Yi, Feng Wei Hybrid natural element method for viscoelasticity problems 2015 Chin. Phys. B 24 010204

[1] Belytschko T, Lu Y Y and Gu L 1994 Int. J. Numer. Methods Eng. 37 229
[2] Wang J F, Sun F X and Cheng R J 2010 Chin. Phys. B 19 060201
[3] Cheng R J and Cheng Y M 2011 Chin. Phys. B 20 070206
[4] Zhang Z, Liew K M and Cheng Y M 2008 Engin. Anal. Bound. Elem. 32 100
[5] Zhang Z, Liew K M, Cheng Y M and Lee Y Y 2008 Engin. Anal. Bound. Elem. 32 241
[6] Zhang Z, Hao S Y, Liew K M and Cheng Y M 2013 Engin. Anal. Bound. Elem. 37 1576
[7] Zhang Z, Wang J F, Cheng Y M and Liew K M 2013 Sci. China-Phys. Mech. Astron. 56 1568
[8] Cheng Y M and Li J H 2005 Acta Phys. Sin. 54 4463 (in Chinese)
[9] Wang J F and Cheng Y M 2012 Chin. Phys. B 21 120206
[10] Wang J F and Cheng Y M 2013 Chin. Phys. B 22 030208
[11] Peng M J, Liu P and Cheng Y M 2009 Int. J. Appl. Mech. 1 367
[12] Peng M J, Li D M and Cheng Y M 2011 Eng. Struct. 33 127
[13] Bai F N, Li D M, Wang J F and Cheng Y M 2012 Chin. Phys. B 21 020204
[14] Cheng Y M, Wang J F and Bai F N 2012 Chin. Phys. B 21 090203
[15] Li D M, Bai F N, Cheng Y M and Liew K M 2012 Comput. Meth. Appl. Mech. Eng. 233-236 1
[16] Cheng Y M, Wang J F and Li R X 2012 Int. J. Appl. Mech. 4 1250042
[17] Li D M, Liew K M and Cheng Y M 2014 Comput. Meth. Appl. Mech. Eng. 269 72
[18] Ren H P and Cheng Y M 2011 Int. J. Appl. Mech. 3 735
[19] Ren H P and Cheng Y M 2012 Eng. Anal. Bound. Elem. 36 873
[20] Dai B D and Cheng Y M 2007 Acta Phys. Sin. 56 597 (in Chinese)
[21] Cheng R J and Cheng Y M 2007 Acta Phys. Sin. 56 5569 (in Chinese)
[22] Wang J F, Bai F N and Cheng Y M 2011 Chin. Phys. B 20 030206
[23] Atluri S N and Zhu T 1998 Comput. Mech. 22 117
[24] Chen L and Cheng Y M 2008 Acta Phys. Sin. 57 1 (in Chinese)
[25] Chen L and Cheng Y M 2008 Acta Phys. Sin. 57 6047 (in Chinese)
[26] Chen L and Cheng Y M 2010 Chin. Phys. B 19 090204
[27] Chen L, Ma H P and Cheng Y M 2013 Chin. Phys. B 22 050202
[28] Weng Y J and Cheng Y M 2013 Chin. Phys. B 22 090204
[29] Li S C, Cheng Y M and Li S C 2006 Acta Phys. Sin. 55 4760 (in Chinese)
[30] Gao H F and Cheng Y M 2010 Int. J. Comput. Methods 7 55
[31] Cheng Y M and Chen M J 2003 Acta Mech. Sin. 35 181 (in Chinese)
[32] Cheng Y M and Peng M J 2005 Sci. Chin. Ser. G: Phys. Mech. Astron 48 641
[33] Kitipornchai S, Liew K M and Cheng Y M 2005 Comput. Mech. 36 13
[34] Liew K M, Cheng Y M and Kitipornchai S 2005 Int. J. Numer. Methods Eng. 64 1610
[35] Liew K M, Cheng Y M and Kitipornchai S 2006 Int. J. Numer. Methods Eng. 65 1310
[36] Qin Y X and Cheng Y M 2006 Acta Phys. Sin. 55 3215 (in Chinese)
[37] Liew K M, Cheng Y M and Kitipornchai S 2007 Int. J. Solids Struct. 44 4220
[38] Cheng Y M, Liew K M and Kitipornchai S 2009 Int. J. Numer. Methods Eng. 78 1258
[39] Liew K M and Cheng Y M 2009 Comput. Meth. Appl. Mech. Eng. 198 3925
[40] Peng M J and Cheng Y M 2009 Eng. Anal. Bound. Elem. 33 77
[41] Ren H P, Cheng Y M and Zhang W 2009 Chin. Phys. B 18 4065
[42] Ren H P, Cheng Y M and Zhang W 2010 Sci. China-Phys. Mech. Astron. 53 758
[43] Wang J F, Sun F X and Cheng Y M 2012 Chin. Phys. B 21 090204
[44] Wang J F, Wang J F, Sun F X and Cheng Y M 2013 Int. J. Comput. Methods 10 1350043
[45] Braun J and Sambridge M 1995 Nature 376 655
[46] Sukumar N, Moran B and Belytschko T 1998 Int. J. Numer. Methods Eng. 43 839
[47] Bueche D, Sukumar N and Moran B 2000 Comput. Mech. 25 207
[48] Cueto E, Calvo B and Doblare M 2002 Int. J. Numer. Methods Eng. 54 871
[49] Martínez M, Cueto E, Doblaré M and Chinesta F 2003 J. Non-Newton. Fluid Mech. 115 51
[50] Calvo B, Martinez M A and Doblaré M 2005 Int. J. Numer. Methods Eng. 62 159
[51] Daneshmand F and Niroomandi S 2007 Eng. Comput. 24 269
[52] Daneshmand F, Javanmard S S, Liaghat T, Moshksar M M and Adamowski J F 2010 Can. J. Civ. Eng. 37 1550
[53] Shahrokhabadi S, Toufigh M M and Gholizadeh R 2010 GeoShanghai International Conference-Geoenvironmental Engineering and Geotechnics, June 3-5, 2010 Shanghai, China, p. 245
[54] Cho J R, Lee H W and Yoo W S 2013 Comput. Meth. Appl. Mech. Eng. 256 17
[55] Sibson R 1980 Mathematical Proceedings of the Cambridge Philosophical Society, January, 1980 Cambridge, England, p. 151
[56] Farin G 1990 Comput. Aided Geom. Des. 7 281
[57] Brown J L 1994 An international conference on curves and surfaces on Wavelets, images, and surface fitting, 1994 Chamonix-Mont-Blanc, France, p. 67
[58] Tabbara M, Blacker T and Belytschko T 1994 Comput. Methods Appl. Mech. Engin. 117 211
[59] Dong Y, Ma Y Q and Feng W 2012 Acta Mech. Sin. 44 568 (in Chinese)
[60] Ma Y Q, Dong Y, Zhou Y K and Feng W 2014 Math. Probl. Eng. 2014 9
[61] Belikov V, Ivanov V, Kontorovich V, Korytnik S and Semenov A Y 1997 Comput. Math. Math. Phys. 37 9
[62] Sukumar N 2001 Proceedings of the first MIT Conference on Fluid and Solid Mechanics, June 12-14, 2001 Cambridge, USA, p. 1665
[63] Tian Z S and Pian T H 2011 Multivariable Variation Principle and Multivariable Finite Element Method (Vol. 1) (Beijing: Science Press) p. 1 (in Chinese)
[64] Pian T H and Chen D P 1982 Int. J. Numer. Methods Eng. 18 1679
[65] Peng M J and Xu Z H 2006 Sci. Chin. Ser.G: Phys. Mech. Astron. 49 671
[66] Flügge W 1975 Viscoelasticity (2nd edn.) (New York: Springer-Verlag) p. 1
[67] Yang H T and Liu Y 2003 Int. J. Solids Struct. 40 701
[68] Sladek J, Sladek V and Zhang C 2005 Engin. Anal. Bound. Elem. 29 597
[69] Sladek J, Sladek V, Zhang C and Schanz M 2006 Comput. Mech. 37 279
[70] Guan Y J, Zhao G Q, Wu X and Lu P 2007 J. Mater. Process. Technol. 187-188 412
[71] Canelas A and Sensale B 2010 Eng. Anal. Bound. Elem. 34 845
[72] Cheng Y M, Li R X and Peng M J 2012 Chin. Phys. B 21 090205
[73] Peng M J, Li R X and Cheng Y M 2014 Engin.Anal. Bound. Elem. 40 104
[74] Lawson C L 1977 Mathematical Software Ⅲ (3nd edn.) (New York: Academic Press) pp. 161-194
[1] Improved reproducing kernel particle method for piezoelectric materials
Ji-Chao Ma(马吉超), Gao-Feng Wei(魏高峰), Dan-Dan Liu(刘丹丹). Chin. Phys. B, 2018, 27(1): 010201.
[2] Topology optimization using the improved element-free Galerkin method for elasticity
Yi Wu(吴意), Yong-Qi Ma(马永其), Wei Feng(冯伟), Yu-Min Cheng(程玉民). Chin. Phys. B, 2017, 26(8): 080203.
[3] Meshless analysis of an improved element-free Galerkin method for linear and nonlinear elliptic problems
Yao-Zong Tang(唐耀宗), Xiao-Lin Li(李小林). Chin. Phys. B, 2017, 26(3): 030203.
[4] Two-dimensional fracture analysis of piezoelectric material based on the scaled boundary node method
Shen-Shen Chen(陈莘莘), Juan Wang(王娟), Qing-Hua Li(李庆华). Chin. Phys. B, 2016, 25(4): 040203.
[5] Solving unsteady Schrödinger equation using the improved element-free Galerkin method
Rong-Jun Cheng(程荣军) and Yu-Min Cheng(程玉民). Chin. Phys. B, 2016, 25(2): 020203.
[6] Hybrid natural element method for large deformation elastoplasticity problems
Ma Yong-Qi, Zhou Yan-Kai. Chin. Phys. B, 2015, 24(3): 030204.
[7] Homogenization theory for designing graded viscoelastic sonic crystals
Qu Zhao-Liang, Ren Chun-Yu, Pei Yong-Mao, Fang Dai-Ning. Chin. Phys. B, 2015, 24(2): 024303.
[8] Analysis of elastoplasticity problems using an improved complex variable element-free Galerkin method
Cheng Yu-Min, Liu Chao, Bai Fu-Nong, Peng Miao-Juan. Chin. Phys. B, 2015, 24(10): 100202.
[9] A meshless algorithm with moving least square approximations for elliptic Signorini problems
Wang Yan-Chong, Li Xiao-Lin. Chin. Phys. B, 2014, 23(9): 090202.
[10] A meshless method based on moving Kriging interpolation for a two-dimensional time-fractional diffusion equation
Ge Hong-Xia, Cheng Rong-Jun. Chin. Phys. B, 2014, 23(4): 040203.
[11] Analysis of variable coefficient advection–diffusion problems via complex variable reproducing kernel particle method
Weng Yun-Jie, Cheng Yu-Min. Chin. Phys. B, 2013, 22(9): 090204.
[12] A complex variable meshless local Petrov-Galerkin method for transient heat conduction problems
Wang Qi-Fang, Dai Bao-Dong, Li Zhen-Feng. Chin. Phys. B, 2013, 22(8): 080203.
[13] A meshless Galerkin method with moving least square approximations for infinite elastic solids
Li Xiao-Lin, Li Shu-Ling. Chin. Phys. B, 2013, 22(8): 080204.
[14] Analysis of the generalized Camassa and Holm equation with the improved element-free Galerkin method
Cheng Rong-Jun, Wei Qi. Chin. Phys. B, 2013, 22(6): 060209.
[15] An element-free Galerkin (EFG) method for generalized Fisher equations (GFE)
Shi Ting-Yu, Cheng Rong-Jun, Ge Hong-Xia. Chin. Phys. B, 2013, 22(6): 060210.
No Suggested Reading articles found!