Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(8): 080301    DOI: 10.1088/1674-1056/23/8/080301
GENERAL Prev   Next  

New operator-ordering identities and associative integration formulas of two-variable Hermite polynomials for constructing non-Gaussian states

Fan Hong-Yia, Wang Zhenb
a Department of Physics, Ningbo University, Ningbo 315211, China;
b College of Science, Changzhou Institute of Technology, Changzhou 213002, China
Abstract  For directly normalizing the photon non-Gaussian states (e.g., photon added and subtracted squeezed states), we use the method of integration within an ordered product (IWOP) of operators to derive some new bosonic operator-ordering identities. We also derive some new integration transformation formulas about one- and two-variable Hermite polynomials in complex function space. These operator identities and associative integration formulas provide much convenience for constructing non-Gaussian states in quantum engineering.
Keywords:  IWOP method      squeezed states      Hermite polynomials  
Received:  15 September 2013      Revised:  28 January 2014      Published:  15 August 2014
PACS:  03.65.-w (Quantum mechanics)  
  42.50.-p (Quantum optics)  
  03.67.-a (Quantum information)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11175113).
Corresponding Authors:  Fan Hong-Yi     E-mail:  fhym@ustc.edu.cn

Cite this article: 

Fan Hong-Yi, Wang Zhen New operator-ordering identities and associative integration formulas of two-variable Hermite polynomials for constructing non-Gaussian states 2014 Chin. Phys. B 23 080301

[1] Agarwal G S and Tara K 1991 Phys. Rev. A 43 492
[2] Zavatta A, Viciani S and Bellini M 2004 Science 306 660
[3] Zavatta A, Viciani S and Bellini M 2005 Phys. Rev. A 72 023820
[4] Lee S Y, Park J, Ji S W, Raymond Ooi C H and Lee H W 2009 J. Opt. Soc. Am. B 26 1532
[5] Xu X X, Yuan H C and Fan H Y 2011 Chin. Phys. B 20 024203
[6] Meng X G, Wang J S and Liang B L 2011 Chin. Phys. B 20 014204
[7] Zhang Z X and Fan H Y 1992 Phys. Lett. A 165 14
[8] Meng X G, Wang Z, Fan H Y and Wang J S 2012 J. Opt. Soc. Am. B 29 3141
[9] Fan H Y, Zaidi H R and Klauder J R 1987 Phys. Rev. D 35 1831
[10] Fan H Y 1989 Phys. Rev. A 40 4237
[11] Fan H Y 2003 J. Opt. B: Quantum Semiclass. Opt. 5 R147
[12] Fan H Y, Lu H L and Fan Y 2006 Ann. Phys. 321 480
[13] Lu H L and Fan H Y 2007 Commun. Theor. Phys. 47 1024
[14] Yuan H C, Fan H Yand Xu X X 2010 Chin. Phys. B 19 104205
[15] Xu X X, Hu L Y and Fan H Y 2010 Opt. Commun. 283 1801
[16] Hu L Y and Fan H Y 2010 J. Mod. Opt. 57 1344
[17] Hu L Y and Fan H Y 2008 J. Opt. Soc. Am. B 25 1955
[1] On the nonclassical dynamics of cavity-assisted four-channel nonlinear coupler
Rafael Julius, Abdel-Baset M A Ibrahim, Pankaj Kumar Choudhury, Hichem Eleuch. Chin. Phys. B, 2018, 27(11): 114206.
[2] New useful special function in quantum optics theory
Feng Chen(陈锋), Hong-Yi Fan(范洪义). Chin. Phys. B, 2016, 25(8): 080303.
[3] Deformed photon-added entangled squeezed vacuum and one-photon states: Entanglement, polarization, and nonclassical properties
A Karimi, M K Tavassoly. Chin. Phys. B, 2016, 25(4): 040303.
[4] Quantum mechanical operator realization of the Stirling numbers theory studied by virtue of the operator Hermite polynomials method
Fan Hong-Yi, Lou Sen-Yue. Chin. Phys. B, 2015, 24(7): 070305.
[5] Generating function of product of bivariate Hermite polynomialsand their applications in studying quantum optical states
Fan Hong-Yi, Zhang Peng-Fei, Wang Zhen. Chin. Phys. B, 2015, 24(5): 050303.
[6] A new optical field generated as an output of the displaced Fock state in an amplitude dissipative channel
Xu Xue-Fen(许雪芬), Fan Hong-Yi(范洪义). Chin. Phys. B, 2015, 24(1): 010301.
[7] New generating function formulae of even- and odd-Hermite polynomials obtained and applied in the context of quantum optics
Fan Hong-Yi, Zhan De-Hui. Chin. Phys. B, 2014, 23(6): 060301.
[8] Photon number cumulant expansion and generating function for photon added- and subtracted-two-mode squeezed states
Lu Dao-Ming, Fan Hong-Yi. Chin. Phys. B, 2014, 23(2): 020302.
[9] Wave functions of a new kind of nonlinearsingle-mode squeezed state
Fan Hong-Yi, Da Cheng, Chen Jun-Hua. Chin. Phys. B, 2014, 23(12): 120302.
[10] Some new generating function formulae of the two-variable Hermite polynomials and their application in quantum optics
Zhan De-Hui, Fan Hong-Yi. Chin. Phys. B, 2014, 23(12): 120301.
[11] Optical field’s quadrature excitation studied by new Hermite-polynomial operator identity
Fan Hong-Yi, He Rui, Da Cheng, Liang Zu-Feng. Chin. Phys. B, 2013, 22(8): 080301.
[12] On the role of the uncertainty principle in superconductivity and superfluidity
Roberto Onofrio. Chin. Phys. B, 2012, 21(7): 070306.
[13] Demonstrating additional law of relativistic velocities based on squeezed light
Yang Da-Bao, Li Yan, Zhang Fu-Lin, Chen Jing-Ling. Chin. Phys. B, 2012, 21(7): 074201.
[14] Generation of a squeezed state at 1.55 μ with periodically poled LiNbO3
Liu Qin, Feng Jin-Xia, Li Hong, Jiao Yue-Chun, Zhang Kuan-Shou. Chin. Phys. B, 2012, 21(10): 104204.
[15] Security of quantum key distribution using two-mode squeezed states against optimal beam splitter attack
He Guang-Qiang, Zhu Si-Wei, Guo Hong-Bin, Zeng Gui-Hua. Chin. Phys. B, 2008, 17(4): 1263-1268.
No Suggested Reading articles found!