Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(6): 065202    DOI: 10.1088/1674-1056/23/6/065202

A tunable dual-narrowband band-pass filter using plasma quantum well structure

Dai Yia, Liu Shao-Bina, Wang Shen-Yunb, Kong Xiang-Kuna b, Chen Chena
a College of Electronic and Information Engineering, Nanjing University of Aeronautics & Astronautics, Nanjing 210016, China;
b College of Electronic and Information Egineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
Abstract  A tunable dual-narrowband pass-band filter is designed. A one-dimensional photonic crystal (1D PC) is comprised of alternate dielectric layer and vacuum layer. Two quantum wells (QWs) as defects can be constructed by sandwiching two plasma slabs symmetrically in the 1D PC, and a dual-narrowband pass-band filter is formed. The conventional finite-difference time-domain (FDTD) method and piecewise linear current density recursive convolution (PLCDRC)-FDTD method are applied to the dielectric and plasma, respectively. The simulation results illustrate that the dual-narrowband frequencies can be tuned by changing the plasma frequency. The pass band interval and the half-power bandwidths (-3-dB band widths) are related to the space interval between two QWs.
Keywords:  quantum well      dual-narrowband pass-band filter      plasma  
Received:  01 October 2013      Revised:  20 January 2014      Published:  15 June 2014
PACS:  52.40.Db (Electromagnetic (nonlaser) radiation interactions with plasma)  
Fund: Project supported by the Aviation Science Foundation (Key Project 20121852030), Jiangsu Provincial Natural Science Foundation, China (Grant No. BK2011727), and the Open Research Program in Jiangsu Provincial Key Laboratory of Meteorological Observation and Information Processing, China (Grant No. KDXS1207).
Corresponding Authors:  Dai Yi, Liu Shao-Bin     E-mail:;

Cite this article: 

Dai Yi, Liu Shao-Bin, Wang Shen-Yun, Kong Xiang-Kun, Chen Chen A tunable dual-narrowband band-pass filter using plasma quantum well structure 2014 Chin. Phys. B 23 065202

[1] Yablonovitch E 1987 Phys. Rev. Lett. 58 2059
[2] John S 1987 Phys. Rev. Lett. 58 2486
[3] Kim S and Gopalan V 2001 Appl. Phys. Lett. 78 3015
[4] Park W and Lee J 2004 Appl. Phys. Lett. 85 360
[5] Thubthimthong B and Chollet F 2008 Microelectron. Eng. 85 759
[6] Joda S and Sasaki A 1997 Jpn. J. Appl. Phys. 36 1907
[7] Wijnhoven J E G and Vos W L 1998 Science 281 802
[8] Velev A, Jede T A, Lobo R F and Lenhoff A M 1997 Nature 389 447
[9] Figontin A, Godin Y A and Vitebsky I 1998 Phys. Rev. B 57 2841
[10] Chen Y B, Zhang C and Zhu Y Y 2002 Mater. Lett. 55 12
[11] Hojo H and Mase A 2004 J. Plasma Fusion Res. 80 8992
[12] Liu S B, Mo J J and Yuan N C 2005 Acta Phys. Sin. 54 2804 (in Chinese)
[13] Mudachathia R, Chennai and Nair P 2012 Journal of Microelectromechanical Systems 21 190
[14] Zhao Y N, Li K Z, Wang X H and Jin C J 2011 Chin. Phys. B 20 074210
[15] Liu N H 1997 Phys. Rev. B 55 4097
[16] Fang Y T, Zhou J and Pun E Y B 2007 Appl. Phys. B 86 587
[17] Chen Y H, Dong J W and Wang H Z 2006 Appl. Phys. Lett. 89 141101
[18] Liu S B, Yuan N C and Mo J J 2003 IEEE Microwave and Wireless Components Letters 13 187
[1] Analysis of asymmetry of the Dα emission spectra under the Zeeman effect in boundary region for D-D experiment on EAST tokamak
Wei Gao(高伟), Juan Huang(黄娟), Jianxun Su(宿建勋), Jing Fu(付静), Yingjie Chen(陈颖杰), Wei Gao(高伟), Zhenwei Wu(吴振伟), and EAST Team. Chin. Phys. B, 2021, 30(2): 025201.
[2] A fitting formula for electron-ion energy partition fraction of 3.54-MeV fusion alpha particles in hot dense deuterium-tritium plasmas
Yan-Ning Zhang(张艳宁), Zhi-Gang Wang(王志刚), Yong-Tao Zhao(赵永涛), and Bin He(何斌). Chin. Phys. B, 2021, 30(1): 015202.
[3] Suppression of auto-resonant stimulated Brillouin scattering in supersonic flowing plasmas by different forms of incident lasers
S S Ban(班帅帅), Q Wang(王清), Z J Liu(刘占军), C Y Zheng(郑春阳), X T He(贺贤土). Chin. Phys. B, 2020, 29(9): 095202.
[4] Dispersion of exciton-polariton based on ZnO/MgZnO quantum wells at room temperature
Huying Zheng(郑湖颖), Zhiyang Chen(陈智阳), Hai Zhu(朱海), Ziying Tang(汤梓荧), Yaqi Wang(王亚琪), Haiyuan Wei(韦海园), Chongxin Shan(单崇新). Chin. Phys. B, 2020, 29(9): 097302.
[5] Effect of radio frequency bias on plasma characteristics of inductively coupled argon discharge based on fluid simulations
Xiao-Yan Sun(孙晓艳), Yu-Ru Zhang(张钰如), Sen Chai(柴森), You-Nian Wang(王友年), Yan-Yan Chu(楚艳艳), Jian-Xin He(何建新). Chin. Phys. B, 2020, 29(9): 095203.
[6] Gaussian process tomography based on Bayesian data analysis for soft x-ray and AXUV diagnostics on EAST
Yan Chao(晁燕), Liqing Xu(徐立清), Liqun Hu(胡立群), Yanmin Duan(段艳敏), Tianbo Wang(王天博), Yi Yuan(原毅), Yongkuan Zhang(张永宽). Chin. Phys. B, 2020, 29(9): 095201.
[7] Effects of microwave oxygen plasma treatments on microstructure and Ge-V photoluminescent properties of diamond particles
Ling-Xiao Sheng(盛凌霄), Cheng-Ke Chen(陈成克), Mei-Yan Jiang(蒋梅燕), Xiao Li(李晓), Xiao-Jun Hu(胡晓君). Chin. Phys. B, 2020, 29(8): 088101.
[8] Direct electron acceleration by chirped laser pulse in a cylindrical plasma channel
Yong-Nan Hu(胡永南), Li-Hong Cheng(成丽红), Zheng-Wei Yao(姚征伟), Xiao-Bo Zhang(张小波), Ai-Xia Zhang(张爱霞), Ju-Kui Xue(薛具奎). Chin. Phys. B, 2020, 29(8): 084103.
[9] Exciton optical absorption in asymmetric ZnO/ZnMgO double quantum wells with mixed phases
Zhi-Qiang Han(韩智强), Li-Ying Song(宋丽颖), Yu-Hai Zan(昝宇海), Shi-Liang Ban(班士良). Chin. Phys. B, 2020, 29(7): 077104.
[10] Electrical modeling of dielectric barrier discharge considering surface charge on the plasma modified material
Hong-Lu Guan(关弘路), Xiang-Rong Chen(陈向荣), Tie Jiang(江铁), Hao Du(杜浩), Ashish Paramane, Hao Zhou(周浩). Chin. Phys. B, 2020, 29(7): 075204.
[11] Analysis of extreme ultraviolet spectra of laser-produced Cd plasmas
Mohammedelnazier Bakhiet, Maogen Su(苏茂根), Shiquan Cao(曹世权), Qi Min(敏琦), Duixiong Sun(孙对兄), Siqi He(何思奇), Lei Wu(吴磊), Chenzhong Dong(董晨钟). Chin. Phys. B, 2020, 29(7): 075203.
[12] Discharge and flow characterizations of the double-side sliding discharge plasma actuator
Qi-Kun He(贺启坤), Hua Liang(梁华), Bo-Rui Zheng(郑博睿). Chin. Phys. B, 2020, 29(6): 064702.
[13] Forebody asymmetric vortex control with extended dielectric barrier discharge plasma actuators
Borui Zheng(郑博睿), Ming Xue(薛明), Chang Ge(葛畅). Chin. Phys. B, 2020, 29(6): 064703.
[14] Oblique collisional effects of dust acoustic waves in unmagnetized dusty plasma
M S Alam, M R Talukder. Chin. Phys. B, 2020, 29(6): 065202.
[15] Interaction of supersonic molecular beam with low-temperature plasma
Dong Liu(刘东), Guo-Feng Qu(曲国峰), Zhan-Hui Wang(王占辉), Hua-Jie Wang(王华杰), Hao Liu(刘灏), Yi-Zhou Wang(王艺舟), Zi-Xu Xu(徐子虚), Min Li(李敏), Chao-Wen Yang(杨朝文), Xing-Quan Liu(刘星泉), Wei-Ping Lin(林炜平), Min Yan(颜敏), Yu Huang(黄宇), Yu-Xuan Zhu(朱宇轩), Min Xu(许敏), Ji-Feng Han(韩纪锋). Chin. Phys. B, 2020, 29(6): 065208.
No Suggested Reading articles found!