Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(4): 044205    DOI: 10.1088/1674-1056/23/4/044205
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Phase control of light amplification in steady and transient processes in an inverted-Y atomic system with spontaneously generated coherence

Tian Si-Conga, Tong Cun-Zhua, Wan Ren-Gangc, Ning Yong-Qianga, Qin Lia, Liu Yuna, Wang Li-Juna, Zhang Hanga, Wang Zeng-Bind, Gao Jin-Yueb
a State Key Laboratory of Luminescence and Application, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China;
b State Key Laboratory of Coherent Light and Atomic and Molecular Spectroscopy of Ministry of Education, College of Physics, Jilin University, Changchun 130012, China;
c State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics, Chinese Academy of Sciences, Xi'an 710119, China;
d Quantum Engineering Center, Beijng Institute of Control Devices, Beijing 100854, China
Abstract  We investigate the effects of spontaneously generated coherence (SGC) on both the steady and transient gain properties in a four-level inverted-Y-type atomic system in the presence of a weak probe, two strong coherent fields, and an incoherent pump. For the steady process, we find that the inversionless gain mainly origins from SGC. In particular, we can modulate the inversionless gain by changing the relative phase between the two fields. Moreover, the amplitude of the gain peak can be enhanced and the additional gain peak can appear by changing the detuning of the coupling field. As for the transient process, the transient gain properties can also be dramatically affected by the SGC. Compared to the case without SGC, the transient gain can be greatly enhanced with completely eliminated transient absorption by choosing the proper relative phase between the two fields. And the inverted-Y-type system with SGC can be simulated in both atomic and semiconductor quantum well systems avoiding the conditions of SGC.
Keywords:  spontaneously generated coherence      gain without inversion      transient evolution      relative phase  
Received:  05 August 2013      Revised:  16 September 2013      Accepted manuscript online: 
PACS:  42.50.Gy (Effects of atomic coherence on propagation, absorption, and Amplification of light; electromagnetically induced transparency and Absorption)  
  42.50.Hz (Strong-field excitation of optical transitions in quantum systems; multiphoton processes; dynamic Stark shift)  
  78.67.De (Quantum wells)  
Corresponding Authors:  Gao Jin-Yue     E-mail:  jygao@mail.jlu.edu.cn
About author:  42.50.Gy; 42.50.Hz; 78.67.De

Cite this article: 

Tian Si-Cong, Tong Cun-Zhu, Wan Ren-Gang, Ning Yong-Qiang, Qin Li, Liu Yun, Wang Li-Jun, Zhang Hang, Wang Zeng-Bin, Gao Jin-Yue Phase control of light amplification in steady and transient processes in an inverted-Y atomic system with spontaneously generated coherence 2014 Chin. Phys. B 23 044205

[1] Scully M O, Zhu S Y and Gavrielides A 1989 Phys. Rev. Lett. 62 2813
[2] Imamoglu A, Field J E and Harris S E 1991 Phys. Rev. Lett. 66 1154
[3] Harris S E 1989 Phys. Rev. Lett. 62 1033
[4] Harris S E and Macklin J J 1989 Phys. Rev. A 40 4135
[5] Gao J Y, Guo C, Guo X Z, Jin G X, Wang P W, Zhao J, Zhang H Z, Jiang Y, Wang D Z and Jiang D M 1992 Opt. Commun. 93 323
[6] Zibrov A S, Lukin M D, Nikonov D E, Hollberg L, Scully M O, Velichansky V L and Robinson H G 1995 Phys. Rev. Lett. 75 1499.
[7] Padmabandu G G, Welch G R, Shubin I N, Fry E S, Nikonov D E, Lukin M D, and Scully M O 1996 Phys. Rev. Lett. 76 2053
[8] Mompart J and Corbalan R 2000 J. Opt. B: Quantum Semiclass. Opt. 2 R7
[9] Wu H B, Xiao M and Gea-Banacloche J 2008 Phys. Rev. A 78 041802(R)
[10] Kilin S Y, Kapale K T and Scully M O 2008 Phys. Rev. Lett. 100 173601
[11] Scully M O 2010 Phys. Rev. Lett. 104 207701
[12] Dorfman K E, Jha P K and Das S 2011 Phys. Rev. A 84 053803
[13] Frogley M D, Dynes J F, Beck M, Faist J and Philips C C 2006 Nat. Mater. 5 175
[14] Zhou P and Swain S 1997 Phys. Rev. Lett. 78 832
[15] Agarwal G S 1974 Quamtum Optics: Springer Tracts in Modern Physics, Vol. 70 (Berlin: Spriger-Verlag)
[16] Zhu S Y and Scully M O 1996 Phys. Rev. Lett. 76 388
[17] Zhou P and Swain S 1996 Phys. Rev. Lett. 77 3995
[18] Paspalakis E, Kylstra N J and Knight P L 1999 Phys. Rev. Lett. 82 2079
[19] Tang Z H, Li G X and Ficek Z 2010 Phys. Rev. A 82 063837
[20] Bennet C H and Divincenzo D P 2000 Nature 404 247
[21] Bajcsy M, Hofferberth S, Balic V, Peyronel T, Hafezi M, Zibrov A S, Vuletic V and Lukin M D 2009 Phys. Rev. Lett. 102 203902
[22] Postavaru O, Harman Z and Keitel C H 2011 Phys. Rev. Lett. 106 033001
[23] Menon S and Agarwal G S 1998 Phys. Rev. A 57 4014
[24] Menon S and Agarwal G S 1999 Phys. Rev. A 61 013807
[25] Dutta S and Dastidar K R 2006 J. Phys. B: At. Mol. Opt. Phys. 39 4525
[26] Cui N, Fan X J, Li A Y, Liu C P, Gong S Q and Xu Z Z 2007 Chin. Phys. 16 718
[27] Wu J H and Gao J Y 2002 Phys. Rev. A 65 063807
[28] Bai Y F, Guo H, Sun H, Han D G, Liu C and Chen X Z 2004 Phys. Rev. A 69 043814
[29] Wu J H, Zhang H F and Gao J Y 2003 Opt. Lett. 28 654
[30] Hou B P, Wang S J, Yu W L and Sun W L 2004 Phys. Rev. A 69 053805
[31] Hou B P, Wang S J, Yu W L and Sun W L 2006 J. Phys. B: At. Mol. Opt. Phys. 39 2335
[32] Xu W H, Wu J H and Gao J Y 2007 Chin. Phys. 16 441
[33] Fan X J, Liu Z B, Liang Y, Jia K N and Tong D M 2011 Phys. Rev. A 83 043805
[34] Xu W H, Wu J H and Gao J Y 2002 Phys. Rev. A 66 063812
[35] Sahrai M and Mahmoudi M 2009 J. Phys. B: At. Mol. Opt. Phys. 42 235503
[36] Fan X J, Liang B, Wang Z D and Tong D M 2010 Opt. Commun. 283 1810
[37] Dawes A M C, Illing L, Clark S M and Gauthier D J 2005 Science 308 672
[38] Yan M, Rickey E G and Zhu Y F 2001 Phys. Rev. A 64 043807
[39] Joshi A and Xiao M 2003 Phys. Lett. A 317 370
[40] Joshi A and Xiao M 2005 Phys. Rev. A 71 041801(R)
[41] Joshi A and Xiao M 2006 Phys. Rev. A 74 052318
[42] Wen J M, Du S W, Zhang Y P, Xiao M and Rubin M H 2008 Phys. Rev. A 77 033816
[43] Kou J, Wan R G, Kang Z H, Wang H H, Jiang L, Zhang X J, Jiang Y and Gao J Y 2010 J. Opt. Soc. Am. B 27 2035
[44] Imamoğlu A 1989 Phys. Rev. A 40 2835
[45] Xia H R, Ye C Y and Zhu S Y 1996 Phys. Rev. Lett. 77 1032
[46] Li L, Wang X, Yang J, Lazarov G, Qi J and Lyyra A M 2000 Phys. Rev. Lett. 84 4016
[47] Ficek Z and Swain S 2004 Phys. Rev. A 69 023401
[48] Wu J H, Li A J, Ding Y, Zhao Y C and Gao J Y 2005 Phys. Rev. A 72 023802
[49] Wang C L, Li A J, Zhou X Y, Kang Z H, Jiang Y and Gao J Y 2008 Opt. Lett. 33 687
[50] Tian S C, Wang C L, Tong C Z, Wang L J, Wang H H, Yang X B, Kang Z H and Gao J Y 2012 Opt. Express 20 23559
[51] Joshi A 2009 Phys. Rev. B 79 115315
[52] Osman K I, Hassan S S and Joshi A 2009 Eur. Phys. J. D 54 119
[53] Wang Z P, Yu B L, Xu F, Zhen S L, Wu X Q, Zhu J and Cao Z G 2012 Physica E 44 1267
[54] Fan S L, Shi Y P, Zhang H J and Sun H 2012 Chin. Phys. B 21 114203
[1] Relative phase-dependent two-electron emission dynamics with two-color circularly polarized laser fields
Tong-Tong Xu(徐彤彤), Lian-Lian Zhang(张莲莲), Zhao Jin(金钊), Wei-Jiang Gong(公卫江). Chin. Phys. B, 2020, 29(9): 093202.
[2] Probe gain via four-wave mixing based on spontaneously generated coherence
Hong Yang(杨红), Ting-gui Zhang(张廷桂), Yan Zhang(张岩). Chin. Phys. B, 2017, 26(2): 024204.
[3] Phase control of group-velocity-based biexciton coherence ina multiple quantum well nanostructure
Seyyed Hossein Asadpour, H. Rahimpour Soleimani. Chin. Phys. B, 2014, 23(10): 104205.
[4] Observation of linewidth narrowing due to a spontaneously generated coherence effect
Tian Si-Cong, Wang Chun-Liang, Kang Zhi-Hui, Yang Xiu-Bin, Wan Ren-Gang, Zhang Xiao-Jun, Zhang Hang, Jiang Yun, Cui Hai-Ning, Gao Jin-Yue. Chin. Phys. B, 2012, 21(6): 064206.
[5] Modulation of atomic exit and injection rates on the phase-dependent gain without inversion in a Doppler broadened open four-level system
Liu Zhong-Bo, Jia Ke-Ning, Liang Ying, Tong Dian-Min, Fan Xi-Jun. Chin. Phys. B, 2012, 21(6): 064208.
[6] Dynamic control of retrieval contrast in a Λ-type atomic system
Zhang Xiao-Hang,Bao Qian-Qian,Zhang Yan,Su Ming-Che,Cui Cui-Li,Wu Jin-Hui. Chin. Phys. B, 2012, 21(5): 054209.
[7] Influence of Doppler broadening and spontaneously generated coherence on propagation effect in a quasi lambda-type four-level system
Liu Zhong-Bo,Liang Ying,Jia Ke-Ning,Fan Xi-Jun. Chin. Phys. B, 2012, 21(2): 024206.
[8] Giant Kerr nonlinearity induced by interacting quantum coherences from decays and incoherent pumping
Bai Yan-Feng, Yang Wen-Xing, Han Ding-An, Yu Xiao-Qiang. Chin. Phys. B, 2012, 21(11): 114208.
[9] Effects of relative phase on transient evolution in an open resonant ladder-type atomic system
Yang Yan-Ling, Liu Zhong-Bo, Wang Lei, Tong Dian-Min, Fan Xi-Jun. Chin. Phys. B, 2009, 18(3): 1054-1060.
[10] Comparison between effects of Doppler broadening on pure and non-pure inversionless gains with frequency up-conversion
Fan Xi-Jun, Ma Hui, Liu Zhong-Bo, Tong Dian-Min. Chin. Phys. B, 2009, 18(12): 5342-5349.
[11] Sideband manipulation of population inversion in a three-level Λ atomic system
Guo Hong-Ju, Niu Yue-Ping, Jin Shi-Qi, Gong Shang-Qing. Chin. Phys. B, 2008, 17(4): 1269-1273.
[12] Effect of spontaneously generated coherence on inversionless lasing gain in an atomic system with Doppler broadening
Ma Hui, Tan Xia, Tian Shu-Fen, Tong Dian-Min, Fan Xi-Jun. Chin. Phys. B, 2007, 16(8): 2400-2406.
[13] Phase control in an open Λ-type system with spontaneously generated coherence
Cui Ni, Fan Xi-Jun, Li Ai-Yun, Liu Cheng-Pu, Gong Shang-Qing, Xu Zhi-Zhan. Chin. Phys. B, 2007, 16(3): 718-724.
[14] Inversionless gain enhancing due to Doppler broadening in a closed lambda-type system
Ma Hui, Tian Shu-Fen, Tan Xia, Tong Dian-Min, Fan Xi-Jun. Chin. Phys. B, 2007, 16(10): 2973-2979.
[15] Amplification mechanism and effects of spontaneously generated coherence on the probe gain in a four-level system
Xu Wei-Hua, Wu Jin-Hui, Gao Jin-Yue. Chin. Phys. B, 2004, 13(5): 692-699.
No Suggested Reading articles found!