Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(3): 033401    DOI: 10.1088/1674-1056/23/3/033401
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

The ternary Ni–Al–Co embedded-atom-method potential for γ/γ’ Ni-based single-crystal superalloys:Construction and application

Du Jun-Ping (杜俊平)a, Wang Chong-Yu (王崇愚)a b c, Yu Tao (于涛)a
a Central Iron and Steel Research Institute, Beijing 100081, China;
b Department of Physics, Tsinghua University, Beijing 100084, China;
c The International Center for Materials Physics, Chinese Academy of Sciences, Shenyang 110016, China
Abstract  An Ni–Al–Co system embedded-atom-method potential is constructed for the γ(Ni)/γ’(Ni3Al) superalloy based on experiments and first-principles calculations. The stacking fault energies (SFEs) of the Ni(Co, Al) random solid solutions are calculated as a function of the concentrations of Co and Al. The calculated SFEs decrease with increasing concentrations of Co and Al, which is consistent with the experimental results. The embedding energy term in the present potential has an important influence on the SFEs of the random solid solutions. The cross-slip processes of a screw dislocation in homogenous Ni(Co) solid solutions are simulated using the present potential and the nudged elastic band method. The cross-slip activation energies increase with increasing Co concentration, which implies that the creep resistance of γ (Ni) may be improved by the addition of Co.
Keywords:  interatomic interaction potential      embedded-atom method      Ni-based single-crystal superalloys  
Received:  31 July 2013      Revised:  23 September 2013      Accepted manuscript online: 
PACS:  34.20.Cf (Interatomic potentials and forces)  
  61.72.Nn (Stacking faults and other planar or extended defects)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2011CB606402) and the National Natural Science Foundation of China (Grant No. 51071091).
Corresponding Authors:  Wang Chong-Yu     E-mail:  cywang@mail.tsinghua.edu.cn

Cite this article: 

Du Jun-Ping (杜俊平), Wang Chong-Yu (王崇愚), Yu Tao (于涛) The ternary Ni–Al–Co embedded-atom-method potential for γ/γ’ Ni-based single-crystal superalloys:Construction and application 2014 Chin. Phys. B 23 033401

[1] Reed R C 2006 The Superalloys: Fundamentals and Applications (Cambridge: Cambridge University Press)
[2] Murakami H, Yamagata T, Harada H and Yamazaki M 1997 Mater. Sci. Eng. A 223 54
[3] Reed R C, Tao T and Warnken N 2009 Acta Mater. 57 5898
[4] Sato J, Omori T, Oikawa K, Ohnuma I, Kainuma R and Ishida K 2006 Science 312 90
[5] Zhu T and Wang C Y 2005 Phys. Rev. B 72 014111
[6] Kohler C, Kizler P and Schmauder S 2005 Mater. Sci. Eng. A 400–401 481
[7] Xie H X, Wang C Y and Yu T 2009 Modelling Simul. Mater. Sci. Eng. 17 055007
[8] Wu W P, Guo Y F, Wang Y S, Mueller R and Gross D 2011 Phil. Mag. 91 357
[9] Liu Z G, Wang C Y and Yu T 2013 Modelling Simul. Mater. Sci. Eng. 21 045009
[10] Daw M S and Baskes M I 1983 Phys. Rev. Lett. 50 1285
[11] Daw M S and Baskes M I 1984 Phys. Rev. B 29 6443
[12] Mishin Y, Farkas D, Mehl M J and Papaconstantopouls D A 1999 Phys. Rev. B 59 3393
[13] Wang T M, Wang B Y, Ju X, Gu Q, Wang Y X and Gao F 2001 Chin. Phys. Lett. 18 361
[14] Wang Z K, Wu Y Q, Shen T, Liu Y H and Jiang G C 2011 Acta Phys. Sin. 60 086105 (in Chinese)
[15] Yuan X J, Chen N X, Shen J and Hu W Y 2010 J. Phys.: Condens. Matter 22 375503
[16] Yuan X J, Chen N X and Shen J 2011 Chin. Phys. Lett. 28 123402
[17] Yuan X J, Chen N X and Shen J 2012 Chin. Phys. B 21 053401
[18] Zhang C H, Huang S, Shen J and Chen N X 2012 Chin. Phys. B 21 113401
[19] Xie Q, Xu W and Huang M 1995 Chin. Phys. Lett. 12 12
[20] Oh D J and Johnson R A 1989 J. Nucl. Mater. 169 5
[21] Pasianot R and Savino E J 1992 Phys. Rev. B 45 12704
[22] Jiang M, Oikawa K and Ikeshoji T 2005 Metall. Mater. Trans. A 36 2307
[23] Igarashi M, Khantha M and Vitek V 1991 Philos. Mag. B 63 603
[24] Du J P, Wang C Y and Yu T 2013 Modelling Simul. Mater. Sci. Eng. 21 015007
[25] Banerjea A and Smith J R 1988 Phys. Rev. B 37 6632
[26] Delley B 1990 J. Chem. Phys. 92 508
[27] Delley B 2000 J. Chem. Phys. 113 7756
[28] Mishin Y, Mehl M J and Papaconstantopoulos D A 2002 Phys. Rev. B 65 224114
[29] Born M and Huang K 1954 Dynamical Theory of Crystal Lattices (Oxford: Clarendon)
[30] Van Midden H J P and Sasse A G B M 1992 Phys. Rev. B 46 6020
[31] Peng P, Soh A K, Yang R and Hu Z Q 2006 Comput. Mater. Sci. 38 354
[32] Wang Y J and Wang C Y 2008 J. Appl. Phys. 104 013109
[33] Kresse G and Hafner J 1993 Phys. Rev. B 48 13115
[34] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[35] Rose J H, Smith J R, Guinea F and Ferrante J 1984 Phys. Rev. B 29 2963
[36] Barrett C S and Massalski T B 1980 Structure of Metals (3rd edn.) (Oxford: Pergamon) p. 626
[37] Kittel C 1976 Introduction to Solid State Physics (5th edn.) (New York: Wiley)
[38] Brandes E A and Brook G B (ed.) 1992 Smithells Metal Reference Book (7th edn.) (Oxford: Clarendon) pp. 15–16
[39] De Boer F R, Boom R, Mattens W C M, Miedema A R and Niessen A K 1988 Cohesion in Metals: Transition Metal Alloys (Amsterdam: North-Holland)
[40] Korner A and Karnthaler H P 1983 Phil. Mag. A 48 469
[41] Neumeier S, Pyczak F and Göken M 2008 Superalloys 2008 (Warrendale: The Minerals, Metals&Materials Society) p. 109
[42] Carroll L J, Feng Q, Mansfield J F and Pollock T M 2007 Mater. Sci. Eng. A 457 292
[43] Nathal M V and Ebert L J 1985 Metall. Trans. A 16 1849
[44] Davies C K L, Nash P and Stevens R N 1980 J Mater. Sci. 15 1521
[45] Wang Y J and Wang C Y 2009 Mater. Res. Soc. Symp. Proc. 1224 FF05-31
[46] Xie X S, Chen G L, Mchugh P J and Tien J K 1982 Scripta Metall. 16 483
[47] Schönfeld B, Reinhard L, Kostorz G and Bührer W 1997 Acta Mater. 45 5187
[48] Mishin Y 2004 Acta Mater. 52 1451
[49] Voter A F and Chen S P 1987 Mater. Res. Soc. Symp. Proc. 82 175
[50] Carlsson A E 1990 Solid State Physics 43 1
[51] Jacobsen K W, Noskov J K and Puska M J 1987 Phys. Rev. B 35 7423
[52] Hirshfeld F L 1977 Theor. Chim. Acta 44 129
[53] Nabarro F R N and de Villiers H L 1995 The Physics of Creep (London: Tylor & Francis Ltd)
[54] Hirth J P and Lothe J 1982 Theory of Dislocations (New York: John Wiley & Sons)
[55] Henkelman G, Uberuaga B P and Jónsson H 2000 J. Chem. Phys. 113 9901
[56] Henkelman G and Jónsson H 2000 J. Chem. Phys. 113 9978
[57] Plimpton S 1995 J. Comput. Phys. 117 1
[1] The influence of 3d-metal alloy additions on the elastic and thermodynamic properties of CuPd3
Huang Shuo (黄烁), Zhang Chuan-Hui (张川晖), Sun Jing (孙婧), Shen Jiang (申江). Chin. Phys. B, 2013, 22(8): 083401.
[2] Construction of embedded-atom-method interatomic potentials for alkaline metals (Li, Na, and K) by lattice inversion
Yuan Xiao-Jian(袁晓俭), Chen Nan-Xian(陈难先), and Shen Jiang(申江) . Chin. Phys. B, 2012, 21(5): 053401.
[3] Chen's lattice inversion embedded-atom method for Ni–Al alloy
Zhang Chuan-Hui (张川晖), Huang Shuo (黄烁), Shen Jiang (申江), Chen Nan-Xian (陈难先 ). Chin. Phys. B, 2012, 21(11): 113401.
[4] Relaxed energy and structure of edge dislocation in iron
Zhang Yan(张研), Xie Li-Juan(解丽娟), Zhang Jian-Min(张建民), and Xu Ke-Wei(徐可为). Chin. Phys. B, 2011, 20(2): 026102.
[5] Molecular dynamics simulation of surface melting behaviours of the V(110) plane
Yang Xi-Yuan(阳喜元), Hu Wang-Yu(胡望宇), Yuan Xiao-Jian(袁晓俭), and Cai Xin-Hua(蔡新华) . Chin. Phys. B, 2008, 17(7): 2633-2638.
[6] Calculation of the surface energy of fcc metals with modified embedded-atom method
Zhang Jian-Min (张建民), Ma Fei (马飞), Xu Ke-Wei (徐可为). Chin. Phys. B, 2004, 13(7): 1082-1090.
No Suggested Reading articles found!