Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(8): 084702    DOI: 10.1088/1674-1056/22/8/084702
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Droplet impact on regular micro-grooved surfaces

Hu Hai-Bao, Huang Su-He, Chen Li-Bin
College of Marine, Northwestern Polytechnical University, Xi'an 710072, China
Abstract  We have investigated experimentally the process of a droplet impact on a regular micro-grooved surface. The target surfaces are patterned such that micro-scale spokes radiate from the center, concentric circles, and parallel lines on the polishing copper plate, using Quasi-LIGA molding technology. The dynamic behavior of water droplets impacting on these structured surfaces is examined using a high-speed camera, including the drop impact processes, the maximum spreading diameters, and the lengths and numbers of fingers at different values of Weber number. Experimental results validate that the spreading processes are arrested on all target surfaces at low velocity. Also, the experimental results at higher impact velocity demonstrate that the spreading process is conducted on the surface parallel to the micro-grooves, but is arrested in the direction perpendicular to the micro-grooves. Besides, the lengths of fingers increase observably, even when they are ejected out as tiny droplets along the groove direction, at the same time the drop recoil velocity is reduced by micro-grooves which are parallel to the spreading direction, but not by micro-grooves which are vertical to the spreading direction.
Keywords:  micro-groove      droplet      drop impact      spreading      fingers  
Received:  19 January 2013      Revised:  20 April 2013      Published:  27 June 2013
PACS:  47.55.Dz  
  47.54.De (Experimental aspects)  
  61.30.Pq (Microconfined liquid crystals: droplets, cylinders, randomly confined liquid crystals, polymer dispersed liquid crystals, and porous systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51109178) and the Science and Technology Innovation Foundation of Northwestern Polytechnical University, China (Grant No. JC20120218).
Corresponding Authors:  Hu Hai-Bao     E-mail:  huhaibao@nwpu.edu.cn

Cite this article: 

Hu Hai-Bao, Huang Su-He, Chen Li-Bin Droplet impact on regular micro-grooved surfaces 2013 Chin. Phys. B 22 084702

[1] Worthington A M 1877 Proc. R. Soc. Lond. A 25 261
[2] Yarin A L 2006 Ann. Rev. Fluid Mech. 38 159
[3] Deegan R D, Brunet P and Eggers J 2008 Nonlinearity 21 1
[4] Li X Y, Ma X H and Lan Z 2010 Langmuir 26 4831
[5] Moita S and Moreira L 2007 Int. J. Heat Fluid Flow 28 735
[6] Guo J, Dai S Q, Dai Q 2010 Acta Phys. Sin. 59 2601 (in Chinese)
[7] Bi F F, Guo Y L, Shen S Q, Chen J X and Li Y Q 2012 Acta Phys. Sin. 61 184702 (in Chinese)
[8] Barthlott W and Neinhuis C 1997 Planta 202 1
[9] Feng L, Li S H, Li Y S, Li H J, Zhang L J, Zhai J, Song Y L, Liu B Q, Jiang L and Zhu D B 2002 Adv. Mater. 14 1857
[10] Merlen A and Brunet P 2009 J. Bionic Eng. 6 330
[11] Rioboo R, Marengo M and Tropea C 2002 Exp. Fluids 33 112
[12] Samuel L, Manzello and Jiann C Y 2003 Phys. Fluids 15 257
[13] Xu L 2007 Phys. Rev. E 75 056316
[14] Kannan R and Sivakumar D 2008 Colloid Surface A 317 694
[15] Minhee L, Young S C and Ho Y K 2010 Phys. Fluids 22 072101
[16] Pasandideh-Fard M, Qiao Y M, Chandra S and Mostaghimi J 1996 Phys. Fluids 8 650
[17] Chen Y, He B, Lee J and Patankar N A 2005 J. Colloid Interf. Sci. 281 458
[1] Surface active agents stabilize nanodroplets and enhance haze formation
Yunqing Ma(马韵箐), Changsheng Chen(陈昌盛), and Xianren Zhang(张现仁). Chin. Phys. B, 2021, 30(1): 010504.
[2] Ultradilute self-bound quantum droplets in Bose-Bose mixtures at finite temperature
Jia Wang(王佳), Xia-Ji Liu(刘夏姬), and Hui Hu(胡辉). Chin. Phys. B, 2021, 30(1): 010306.
[3] The drying of liquid droplets
Zechao Jiang(姜泽超), Xiuyuan Yang(杨修远), Mengmeng Wu(吴萌萌), Xingkun Man(满兴坤). Chin. Phys. B, 2020, 29(9): 096803.
[4] Asynchronism of the spreading dynamics underlying the bursty pattern
Tong Wang(王童), Ming-Yang Zhou(周明洋), Zhong-Qian Fu(付忠谦). Chin. Phys. B, 2020, 29(5): 058901.
[5] Droplets breakup via a splitting microchannel
Wei Gao(高崴), Cheng Yu(于程), Feng Yao(姚峰). Chin. Phys. B, 2020, 29(5): 054702.
[6] Electrohydrodynamic behaviors of droplet under a uniform direct current electric field
Zi-Long Deng(邓梓龙), Mei-Mei Sun(孙美美), Cheng Yu(于程). Chin. Phys. B, 2020, 29(3): 034703.
[7] Shortest path of temporal networks: An information spreading-based approach
Yixin Ma(马一心), Xiaoyu Xue(薛潇雨), Meng Cai(蔡萌), and Wei Wang(王伟). Chin. Phys. B, 2020, 29(12): 128902.
[8] Evaporation of saline colloidal droplet and deposition pattern
Hong-Hui Sun(孙弘辉), Wei-Bin Li(李伟斌), Wen-Jie Ji(纪文杰), Guo-Liang Dai(戴国亮), Yong Huan(郇勇), Yu-Ren Wang(王育人), Ding Lan(蓝鼎). Chin. Phys. B, 2020, 29(1): 014701.
[9] Hydrodynamic binary coalescence of droplets under air flow in a hydrophobic microchannel
Chao Wang(王超), Chao-qun Shen(沈超群), Su-chen Wu(吴苏晨), Xiang-dong Liu(刘向东), Fang-ping Tang(汤方平). Chin. Phys. B, 2019, 28(2): 024702.
[10] Dynamics and control strategies of infectious disease under different scenarios on hierarchical geographical networks
Xun Ma(马勋), Ya-Peng Cui(崔亚鹏), Xiao-Li Yan(闫小丽), Shun-Jiang Ni(倪顺江), Shi-Fei Shen(申世飞). Chin. Phys. B, 2019, 28(12): 128901.
[11] Efficiency-enhanced AlGaInP light-emitting diodes using transparent plasmonic silver nanowires
Xia Guo(郭霞), Qiao-Li Liu(刘巧莉), Hui-Jun Tian(田慧军), Chun-Wei Guo(郭春威), Chong Li(李冲), An-Qi Hu(胡安琪), Xiao-Ying He(何晓颖), Hua Wu(武华). Chin. Phys. B, 2018, 27(9): 098502.
[12] Microdroplet targeting induced by substrate curvature
Hongguang Zhang(张红光), Zhenjiang Guo(郭振江), Shan Chen(陈珊), Bo Zhang(张博), Xianren Zhang(张现仁). Chin. Phys. B, 2018, 27(9): 096801.
[13] Analysis of meniscus beneath metastable droplets and wetting transition on micro/nano textured surfaces
Yanjie Li(李艳杰), Xiangqin Li(李香琴), Tianqing Liu(刘天庆), Weiguo Song(宋伟国). Chin. Phys. B, 2018, 27(8): 086801.
[14] Surface-tension-confined droplet microfluidics
Xinlian Chen(陈新莲), Han Wu(伍罕), Jinbo Wu(巫金波). Chin. Phys. B, 2018, 27(2): 029202.
[15] Numerical modeling of condensate droplet on superhydrophobic nanoarrays using the lattice Boltzmann method
Qing-Yu Zhang(张庆宇), Dong-Ke Sun(孙东科), You-Fa Zhang(张友法), Ming-Fang Zhu(朱鸣芳). Chin. Phys. B, 2016, 25(6): 066401.
No Suggested Reading articles found!