Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(8): 084702    DOI: 10.1088/1674-1056/22/8/084702
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Droplet impact on regular micro-grooved surfaces

Hu Hai-Bao (胡海豹), Huang Su-He (黄苏和), Chen Li-Bin (陈立斌)
College of Marine, Northwestern Polytechnical University, Xi'an 710072, China
Abstract  We have investigated experimentally the process of a droplet impact on a regular micro-grooved surface. The target surfaces are patterned such that micro-scale spokes radiate from the center, concentric circles, and parallel lines on the polishing copper plate, using Quasi-LIGA molding technology. The dynamic behavior of water droplets impacting on these structured surfaces is examined using a high-speed camera, including the drop impact processes, the maximum spreading diameters, and the lengths and numbers of fingers at different values of Weber number. Experimental results validate that the spreading processes are arrested on all target surfaces at low velocity. Also, the experimental results at higher impact velocity demonstrate that the spreading process is conducted on the surface parallel to the micro-grooves, but is arrested in the direction perpendicular to the micro-grooves. Besides, the lengths of fingers increase observably, even when they are ejected out as tiny droplets along the groove direction, at the same time the drop recoil velocity is reduced by micro-grooves which are parallel to the spreading direction, but not by micro-grooves which are vertical to the spreading direction.
Keywords:  micro-groove      droplet      drop impact      spreading      fingers  
Received:  19 January 2013      Revised:  20 April 2013      Accepted manuscript online: 
PACS:  47.55.Dz  
  47.54.De (Experimental aspects)  
  61.30.Pq (Microconfined liquid crystals: droplets, cylinders, randomly confined liquid crystals, polymer dispersed liquid crystals, and porous systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51109178) and the Science and Technology Innovation Foundation of Northwestern Polytechnical University, China (Grant No. JC20120218).
Corresponding Authors:  Hu Hai-Bao     E-mail:  huhaibao@nwpu.edu.cn

Cite this article: 

Hu Hai-Bao (胡海豹), Huang Su-He (黄苏和), Chen Li-Bin (陈立斌) Droplet impact on regular micro-grooved surfaces 2013 Chin. Phys. B 22 084702

[1] Worthington A M 1877 Proc. R. Soc. Lond. A 25 261
[2] Yarin A L 2006 Ann. Rev. Fluid Mech. 38 159
[3] Deegan R D, Brunet P and Eggers J 2008 Nonlinearity 21 1
[4] Li X Y, Ma X H and Lan Z 2010 Langmuir 26 4831
[5] Moita S and Moreira L 2007 Int. J. Heat Fluid Flow 28 735
[6] Guo J, Dai S Q, Dai Q 2010 Acta Phys. Sin. 59 2601 (in Chinese)
[7] Bi F F, Guo Y L, Shen S Q, Chen J X and Li Y Q 2012 Acta Phys. Sin. 61 184702 (in Chinese)
[8] Barthlott W and Neinhuis C 1997 Planta 202 1
[9] Feng L, Li S H, Li Y S, Li H J, Zhang L J, Zhai J, Song Y L, Liu B Q, Jiang L and Zhu D B 2002 Adv. Mater. 14 1857
[10] Merlen A and Brunet P 2009 J. Bionic Eng. 6 330
[11] Rioboo R, Marengo M and Tropea C 2002 Exp. Fluids 33 112
[12] Samuel L, Manzello and Jiann C Y 2003 Phys. Fluids 15 257
[13] Xu L 2007 Phys. Rev. E 75 056316
[14] Kannan R and Sivakumar D 2008 Colloid Surface A 317 694
[15] Minhee L, Young S C and Ho Y K 2010 Phys. Fluids 22 072101
[16] Pasandideh-Fard M, Qiao Y M, Chandra S and Mostaghimi J 1996 Phys. Fluids 8 650
[17] Chen Y, He B, Lee J and Patankar N A 2005 J. Colloid Interf. Sci. 281 458
[1] Topological phase transition in network spreading
Fuzhong Nian(年福忠) and Xia Zhang(张霞). Chin. Phys. B, 2023, 32(3): 038901.
[2] Drop impact on substrates with heterogeneous stiffness
Yang Cheng(成阳), Jian-Gen Zheng(郑建艮), Chen Yang(杨晨), Song-Lei Yuan(袁松雷), Guo Chen(陈果), and Li-Yu Liu(刘雳宇). Chin. Phys. B, 2022, 31(8): 084702.
[3] Influence fast or later: Two types of influencers in social networks
Fang Zhou(周方), Chang Su(苏畅), Shuqi Xu(徐舒琪), and Linyuan Lü(吕琳媛). Chin. Phys. B, 2022, 31(6): 068901.
[4] Crown evolution kinematics of a camellia oil droplet impacting on a liquid layer
Zhongyu Shi(石中玉), Guanqing Wang(王关晴), Xiangxiang Chen(陈翔翔), Lu Wang(王路), Ning Ding(丁宁), and Jiangrong Xu(徐江荣). Chin. Phys. B, 2022, 31(5): 054701.
[5] Numerical simulation of two droplets impacting upon a dynamic liquid film
Quan-Yuan Zeng(曾全元), Xiao-Hua Zhang(张小华), and Dao-Bin Ji(纪道斌). Chin. Phys. B, 2022, 31(4): 046801.
[6] Energy spreading, equipartition, and chaos in lattices with non-central forces
Arnold Ngapasare, Georgios Theocharis, Olivier Richoux, Vassos Achilleos, and Charalampos Skokos. Chin. Phys. B, 2022, 31(2): 020506.
[7] Dynamical behavior and optimal impulse control analysis of a stochastic rumor spreading model
Liang'an Huo(霍良安) and Xiaomin Chen(陈晓敏). Chin. Phys. B, 2022, 31(11): 110204.
[8] Numerical simulation on partial coalescence of a droplet with different impact velocities
Can Peng(彭灿), Xianghua Xu(徐向华), and Xingang Liang(梁新刚). Chin. Phys. B, 2021, 30(5): 054703.
[9] Contagion dynamics on adaptive multiplex networks with awareness-dependent rewiring
Xiao-Long Peng(彭小龙) and Yi-Dan Zhang(张译丹). Chin. Phys. B, 2021, 30(5): 058901.
[10] Continuous droplet rebound on heated surfaces and its effects on heat transfer property: A lattice Boltzmann study
Qing-Yu Zhang(张庆宇), Qi-Peng Dong(董其鹏), Shan-Lin Wang(王山林), Zhi-Jun Wang(王志军), and Jian Zhou(周健). Chin. Phys. B, 2021, 30(4): 044703.
[11] Close-coupled nozzle atomization integral simulation and powder preparation using vacuum induction gas atomization technology
Peng Wang(汪鹏), Jing Li(李静), Xin Wang(王欣), Heng-San Liu(刘恒三), Bin Fan(范斌), Ping Gan(甘萍), Rui-Feng Guo(郭瑞峰), Xue-Yuan Ge(葛学元), and Miao-Hui Wang(王淼辉). Chin. Phys. B, 2021, 30(2): 027502.
[12] Near-optimal control of a stochastic rumor spreading model with Holling II functional response function and imprecise parameters
Liang'an Huo(霍良安) and Xiaomin Chen(陈晓敏). Chin. Phys. B, 2021, 30(12): 120205.
[13] Effect of the liquid temperature on the interaction behavior for single water droplet impacting on the immiscible liquid
Tiantian Wang(汪甜甜), Changjian Wang(王昌建), Shengchao Rui(芮圣超), and Kai Pan(泮凯). Chin. Phys. B, 2021, 30(11): 116801.
[14] Dielectrowetting actuation of droplet: Theory and experimental validation
Yayan Huang(黄亚俨), Rui Zhao(赵瑞), Zhongcheng Liang(梁忠诚), Yue Zhang(张月), Meimei Kong(孔梅梅), and Tao Chen(陈陶). Chin. Phys. B, 2021, 30(10): 106801.
[15] Surface active agents stabilize nanodroplets and enhance haze formation
Yunqing Ma(马韵箐), Changsheng Chen(陈昌盛), and Xianren Zhang(张现仁). Chin. Phys. B, 2021, 30(1): 010504.
No Suggested Reading articles found!