Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(1): 016601    DOI: 10.1088/1674-1056/22/1/016601
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Theoretical prediction of ion conductivity in solid state HfO2

Zhang Wei (张炜)a, Chen Wen-Zhou (陈文周)b, Sun Jiu-Yu (孙久雨)b, Jiang Zhen-Yi (姜振益)b
a School of Science, Xi'an University of Posts and Telecommunications, Xi'an 710121, China;
b Institute of Modern Physics, Northwest University, Xi'an 710069, China
Abstract  A theoretical prediction of ion conductivity for solid state HfO2 is carried out in analogy to ZrO2 based on the density functional calculation. Geometric and electronic structures of pure bulks exhibit similarity for the two materials. Negative formation enthalpy and negative formation energy of vacancy are found for YSH (yttria-stabilized hafnia) and YSZ (yttria-stabilized zirconia), suggesting the stability of both materials. Low activation energies (below 0.7 eV) of diffusion are found in both materials, and YSH's is a little higher than that of YSZ. In addition, for both HfO2 and ZrO2, the supercells with native oxygen vacancies are also studied. The so-called defect states are observed in the supercells with neutral and +1 charge native vacancy but not in the +2 charge one. It can give an explanation to the relatively lower activation energies of yttria-doped oxides and +2 charge vacancy supercells. A brief discussion is presented to explain the different YSH ion conductivities in the experiment and obtained by us, and we attribute this to the different ion vibrations at different temperatures.
Keywords:  ion conduction      diffusion in solids      ionic crystals      density functional calculations  
Received:  13 December 2011      Revised:  26 August 2012      Accepted manuscript online: 
PACS:  66.10.Ed (Ionic conduction)  
  66.30.-h (Diffusion in solids)  
  66.30.hd (Ionic crystals)  
  71.15.Mb (Density functional theory, local density approximation, gradient and other corrections)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10647008 and 50971099) and the Research Fund for the Doctoral Program of Higher Education, China (Grant No. 20096101110017).
Corresponding Authors:  Jiang Zhen-Yi     E-mail:  jiangzy@nwu.edu.cn

Cite this article: 

Zhang Wei (张炜), Chen Wen-Zhou (陈文周), Sun Jiu-Yu (孙久雨), Jiang Zhen-Yi (姜振益) Theoretical prediction of ion conductivity in solid state HfO2 2013 Chin. Phys. B 22 016601

[1] Aldebert P and Traverse J 1985 J. Am. Ceram. Soc. 68 34
[2] Zhao X, Ceresoli D and Vanderbilt D 2005 Phys. Rev. B 71 085107
[3] Stapper G, Bernasconi M, Nicoloso N and Parrinello M 1999 Phys. Rev. B 59 797
[4] Bogicevic A, Wolverton C, Crosbie G M and Stechel E B 2001 Phys. Rev. B 64 014106
[5] Ostanin S, Salamatov E, Craven A J, McComb D W and Vlachos D 2002 Phys. Rev. B 66 132105
[6] Perumal T P, Sridhar V, Murthy K P N, Easwarakumar K S and Ramasamy S 2002 Physica A 309 35
[7] Pornprasertsuk R, Ramanarayanan P, Musgrave C B and Prinz F B 2005 J. Appl. Phys. 98 103513
[8] Krishnamurthy R, Yoon Y G, Srolovitz D J and Car R 2004 J. Am. Ceram. Soc. 87 1821
[9] Krishnamurthy R, Srolovitz D J, Kudin K N and Car R 2005 J. Am. Ceram. Soc. 88 2143
[10] Pietrucci F, Bernasconi M, Laio A and Parrinello M 2008 Phys. Rev. B 78 094301
[11] Wagner C 1943 Naturwissenschaften 31 265
[12] Lowther J E, Dewhurst J K, Leger J M and Haines J 1999 Phys. Rev. B 60 14485
[13] Zheng J X, Ceder G, Maxisch T, Chim W K and Choi W K 2007 Phys. Rev. B 75 104112
[14] Fiorentini V and Gulleri G 2002 Phys. Rev. Lett. 89 266101
[15] Ramo D M Shluger A L, Gavartin J L and Bersuker G 2007 Phys. Rev. Lett. 99 155504
[16] Tang C, Tuttle B and Ramprasad R 2007 Phys. Rev. B 76 073306
[17] Cho D Y, Jung H S and Hwang C S 2010 Phys. Rev. B 82 094104
[18] Robertson J, Sharia O and Demkov A A 2007 Appl. Phys. Lett. 91 132912
[19] Smirnova T P, Yakovkina L V, Beloshapkin S A, Kaichev V V, Alferova N I and Song J H 2010 J. Phys. Chem. Solids 71 836
[20] Guo X 2011 Scr Mater. 65 96
[21] Trubelja M F and Stubican V S 1991 Solid State Ionics 49 89
[22] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[23] Kresse G and Furthmuller J 1996 Phys. Rev. B 54 11169
[24] Blochl P E 1994 Phys. Rev. B 50 17953
[25] Kresse G and Joubert D 1998 Phys. Rev. B 59 1758
[26] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[27] Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J and Fiolhais C 1992 Phys. Rev. B 46 6671
[28] Stacy D W, Johnstone J K and Wilder D R 1972 J. Am. Ceram. Soc. 55 482
[29] Ingel R P and Lewis D 1988 J. Am. Ceram. Soc. 71 265
[30] McComb D W 1996 Phys. Rev. B 54 7094
[31] Ye H G, Chen G D, Zhu Y Z and Lü H M 2007 Chin. Phys. 16 3803
[32] Fang Z J, Shi L J and Liu Y H 2008 Chin. Phys. B 17 4279
[33] Wang K P and Huang Y 2011 Chin. Phys. B 20 077401
[34] Zhang J, Liang E J, Sun Q and Jia Y 2012 Chin. Phys. B 21 047201
[35] Zhang L Y, Yan J L, Zhang Y J and Li T 2012 Chin. Phys. B 21 067102
[36] Qiao Z J, Chen G D, Ye H G, Wu Y L, Niu H B and Zhu Y Z 2012 Chin. Phys. B 21 087101
[37] Janotti A and Van de Walle C G 2006 J. Cryst. Growth 287 58
[38] Pascual C and Duran P 1983 J. Am. Ceram. Soc. 66 22
[39] Murch G E 1982 Solid State Ionics 7 177
[1] Elastic properties of Nb-based alloys by using the density functional theory
Liu Zeng-Hui(刘增辉) and Shang Jia-Xiang (尚家香) . Chin. Phys. B, 2012, 21(1): 016202.
[2] Structural transition of FeSe under high pressure
Li Wei(李炜), Chen Jun-Fang(陈俊芳), He Qin-Yu(何琴玉), Wang Teng(王腾), and Pan Zhong-Liang(潘中良). Chin. Phys. B, 2011, 20(2): 026101.
[3] First principle study on the elastic and thermodynamic properties of TiB2 crystal under high temperature
Wang Chun-Lei(王春雷), Yu Ben-Hai(余本海), Huo Hai-Liang(霍海亮), Chen Dong(陈东), and Sun Hai-Bin(孙海斌). Chin. Phys. B, 2009, 18(3): 1248-1252.
No Suggested Reading articles found!