Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(6): 064501    DOI: 10.1088/1674-1056/21/6/064501

Symmetry of Lagrangians of a holonomic variable mass system

Wu Hui-Bin, Mei Feng-Xiang
Faculty of Science, Beijing Institute of Technology, Beijing 100081, China
Abstract  The symmetry of Lagrangians of a holonomic variable mass system is studied. Firstly, the differential equations of motion of the system are established. Secondly, the definition and the criterion of the symmetry of the system are presented. Thirdly, the conditions under which there exists a conserved quantity deduced by the symmetry are obtained. The form of the conserved quantity is the same as that of the constant mass Lagrange system. Finally, an example is shown to illustrate the application of the result.
Keywords:  Holonomic system      variable mass system      symmetry of Lagrangians      conserved quantity     
Received:  13 November 2011      Published:  01 May 2012
PACS:  45.20.Jj (Lagrangian and Hamiltonian mechanics)  
  11.30.-j (Symmetry and conservation laws)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10932002 and 10972031) and the Beijing Municipal Key Disciplines Fund for General Mechanics and Foundation of Mechanics.
Corresponding Authors:  Wu Hui-Bin     E-mail:

Cite this article: 

Wu Hui-Bin, Mei Feng-Xiang Symmetry of Lagrangians of a holonomic variable mass system 2012 Chin. Phys. B 21 064501

[1] Santilli R M 1983 Foundations of Theoretical Mechanics/ II (New York: Springer-Verlag)
[2] Dass T 1966 Phys. Rev. 150 1251
[3] Djukić Dj S 1974 Arch. Mech. 26 243
[4] Djukić Dj S and Vujanović B D 1975 Acta Mech. 23 17
[5] Bahar L Y and Kwatny H G 1987 Int. J. Nonlinear Mech. 22 125
[6] Sarlet W and Cantrijn F 1981 SIAM Rev. 23 467
[7] Liu D 1991 Sci. Chin. Ser. A 34 419
[8] Mei F X 1993 Sci. Chin. Ser. A 36 1456
[9] Lutzky M 1979 J. Phys. A: Math. Gen. 12 973
[10] Prince G E and Eliezer C J 1981 J. Phys. A: Math. Gen. 14 587
[11] Mei F X 2000 Acta Mech. 141 135
[12] Fu J L and Chen L Q 2003 Phys. Lett. A 317 255
[13] Chen X W, Li Y M and Zhao Y H 2005 Phys. Lett. A 337 274
[14] Mei F X 2000 J. Beijing Institute of Technology 9 120
[15] Wang S Y and Mei F X 2002 Chin. Phys. 11 5
[16] Fu J L and Chen L Q 2004 Phys. Lett. A 331 138
[17] Shi S Y and Fu J L 2011 Chin. Phys. B 20 021101
[18] Jiang W A, Li Z J and Luo S K 2011 Chin. Phys. B 20 030202
[19] Currie D G and Saletan E J 1966 J. Math. Phys. 7 967
[20] Hojman S and Harleston H 1981 J. Math. Phys. 22 1414
[21] Metscherski I A 1952 Works on Mechanics of Body of Variable Mass (Moscow: GTTTL) (in Russian)
[22] Gantmacher F R and Levin L M 1964 The Fight of Uncontrolled Rockets (New York: The Macmillan Co)
[23] Yang L W and Mei F X 1989 Mechanics of Variable Mass Systems (Beijing: Beijing Institute of Technology Press) (in Chinese)
[24] Ge Z M 1997 Advanced Dynamics for Variable Mass Systems (Taipeh: Gah Lih Book Company)
[25] Mei F X 2000 ASME Appl. Mech. Rev. 53 283
[26] Zhao Y Y and Mei F X 1999 Symmetries and Invariants of Mechanical Systems (Beijing: Science Press) (in Chinese)
[1] Quasi-canonicalization for linear homogeneous nonholonomic systems
Yong Wang(王勇), Jin-Chao Cui(崔金超), Ju Chen(陈菊), Yong-Xin Guo(郭永新). Chin. Phys. B, 2020, 29(6): 064501.
[2] Generalized Chaplygin equations for nonholonomic systems on time scales
Shi-Xin Jin(金世欣), Yi Zhang(张毅). Chin. Phys. B, 2018, 27(2): 020502.
[3] Noether symmetry and conserved quantity for dynamical system with non-standard Lagrangians on time scales
Jing Song(宋静), Yi Zhang(张毅). Chin. Phys. B, 2017, 26(8): 084501.
[4] Generalized Birkhoffian representation of nonholonomic systems and its discrete variational algorithm
Shixing Liu(刘世兴), Chang Liu(刘畅), Wei Hua(花巍), Yongxin Guo(郭永新). Chin. Phys. B, 2016, 25(11): 114501.
[5] Non-Noether symmetries of Hamiltonian systems withconformable fractional derivatives
Lin-Li Wang (王琳莉) and Jing-Li Fu(傅景礼). Chin. Phys. B, 2016, 25(1): 014501.
[6] Symmetries and variational calculationof discrete Hamiltonian systems
Xia Li-Li, Chen Li-Qun, Fu Jing-Li, Wu Jing-He. Chin. Phys. B, 2014, 23(7): 070201.
[7] Noether symmetry and conserved quantity for a Hamilton system with time delay
Jin Shi-Xin, Zhang Yi. Chin. Phys. B, 2014, 23(5): 054501.
[8] Noether's theorems of a fractional Birkhoffian system within Riemann–Liouville derivatives
Zhou Yan, Zhang Yi. Chin. Phys. B, 2014, 23(12): 124502.
[9] Lie symmetry theorem of fractional nonholonomic systems
Sun Yi, Chen Ben-Yong, Fu Jing-Li. Chin. Phys. B, 2014, 23(11): 110201.
[10] Mei symmetry and conservation laws of discrete nonholonomic dynamical systems with regular and irregular lattices
Zhao Gang-Ling, Chen Li-Qun, Fu Jing-Li, Hong Fang-Yu. Chin. Phys. B, 2013, 22(3): 030201.
[11] Conformal invariance, Noether symmetry, Lie symmetry and conserved quantities of Hamilton systems
Chen Rong, Xu Xue-Jun. Chin. Phys. B, 2012, 21(9): 094501.
[12] A type of conserved quantity of Mei symmetry of Nielsen equations for a holonomic system
Cui Jin-Chao, Han Yue-Lin, Jia Li-Qun. Chin. Phys. B, 2012, 21(8): 080201.
[13] Noether conserved quantities and Lie point symmetries for difference nonholonomic Hamiltonian systems in irregular lattices
Xia Li-Li, Chen Li-Qun. Chin. Phys. B, 2012, 21(7): 070202.
[14] Form invariance and approximate conserved quantity of Appell equations for a weakly nonholonomic system
Jia Li-Qun, Zhang Mei-Ling, Wang Xiao-Xiao, Han Yue-Lin. Chin. Phys. B, 2012, 21(7): 070204.
[15] Symmetry of Lagrangians of holonomic nonconservative system in event space
Zhang Bin, Fang Jian-Hui, Zhang Wei-Wei. Chin. Phys. B, 2012, 21(7): 070208.
No Suggested Reading articles found!