Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(5): 050202    DOI: 10.1088/1674-1056/21/5/050202
GENERAL Prev   Next  

Mei conserved quantity directly induced by Lie symmetry in a nonconservative Hamilton system

Fang Jian-Hui,Zhang Bin,Zhang Wei-Wei,Xu Rui-Li
College of Science, China University of Petroleum, Qingdao 266580, China
Abstract  In this paper, we investigate whether the Lie symmetry can induce the Mei conserved quantity directly in a nonconservative Hamilton system and a theorem is presented. The condition under which the Lie symmetry of the system directly induces the Mei conserved quantity is given. Meanwhile, an example is discussed to illustrate the application of the results. The present results have shown that the Lie symmetry of a nonconservative Hamilton system can also induce the Mei conserved quantity directly.
Keywords:  Lie symmetry      Mei conserved quantity      nonconservative Hamilton system     
Received:  27 November 2011      Published:  01 April 2012
PACS:  02.20.Sv (Lie algebras of Lie groups)  
  11.30.-j (Symmetry and conservation laws)  
  45.20.Jj (Lagrangian and Hamiltonian mechanics)  
Fund: Projct supported by the Natural Science Foundation of Shandong Province, China (Grant No. ZR2011AM012) and the Fundamental Research Funds for the Central Universities, China (Grant No. 09CX04018A).

Cite this article: 

Fang Jian-Hui,Zhang Bin,Zhang Wei-Wei,Xu Rui-Li Mei conserved quantity directly induced by Lie symmetry in a nonconservative Hamilton system 2012 Chin. Phys. B 21 050202

[1] Noether A E 1918 Math. Phys. KI II 235
[2] Mei F X 1999 Applications of Lie Groups and Lie Algebras to Constrained Mechanics Systems (Beijing:Science Press) (in Chinese)
[3] Lutzky M 1979 J. Phys. A: Math Gen. 12 973
[4] Mei F X 2000 J. Beijing Inst. Technol. 9 120
[5] Mei F X 2001 Chin. Phys. 10 177
[6] Luo S K 2003 Acta Phys. Sin. 52 2941 (in Chinese)
[7] Fang J H 2003 Commun. Theor. Phys. 40 269
[8] Hojman S A 1992 J. Phys. A: Math. Gen. 25 L219
[9] Mei F X 2004 Symmetries and Conserved Quantities of Constrained Mechanics Systems (Beijing:Beijing Institute of Technology Press) (in Chinese)
[10] Zhang Y 2005 Acta Phys. Sin. 54 2980 (in Chinese)
[11] Guo Y X, Jiang L Y and Yu Y 2001 Chin. Phys. 10 181
[12] Wu H B 2004 Chin. Phys. 13 589
[13] Chen X W, Li Y M and Zhao Y H 2005 Phys. Lett. A 337 274
[14] Zhang H B and Chen L Q 2005 J. Phys. Soc. Japan 74 905
[15] Xu X J, Qin M C and Mei F X 2005 Chin. Phys. 14 1287
[16] Fu J L, Chen L Q, Jimenez S and Tang Y F 2006 Phys. Lett. A 358 5
[17] Fang J H, Ding N and Wang P 2007 Chin. Phys. 16 887
[18] Ge W K 2007 Acta Phys. Sin. 56 1 (in Chinese)
[19] Zheng S W, Xie J F and Chen W C 2008 Chin. Phys. Lett. 25 809
[20] Cai J L and Mei F X 2008 Acta Phys. Sin. 57 5369 (in Chinese)
[21] Jia L Q, Cui J C, Zhang Y Y and Luo S K 2009 Acta Phys. Sin. 58 16 (in Chinese)
[22] Fang J H, Zhang M J and Zhang W W 2010 Phys. Lett. A 374 1806
[23] Wu H B and Mei F X 2010 Chin. Phys. B 19 030303
[24] Lou Z M 2010 Acta Phys. Sin. 59 6764 (in Chinese)
[25] Wang C D, Liu S X and Mei F X 2010 Acta Phys. Sin. 59 8322 (in Chinese)
[26] Dong W S, Huang B X and Fang J H 2011 Chin. Phys. B 19 010204
[1] Lie symmetry theorem of fractional nonholonomic systems
Sun Yi, Chen Ben-Yong, Fu Jing-Li. Chin. Phys. B, 2014, 23(11): 110201.
[2] Lie symmetries and exact solutions for a short-wave model
Chen Ai-Yong, Zhang Li-Na, Wen Shuang-Quan. Chin. Phys. B, 2013, 22(4): 040510.
[3] Lie symmetry and its generation of conserved quantity of Appell equation in a dynamical system of the relative motion with Chetaev-type nonholonomic constraints
Wang Xiao-Xiao, Han Yue-Lin, Zhang Mei-Ling, Jia Li-Qun. Chin. Phys. B, 2013, 22(2): 020201.
[4] Mei symmetry and Mei conserved quantity of the Appell equation in a dynamical system of relative motion with non-Chetaev nonholonomic constraints
Wang Xiao-Xiao,Sun Xian-Ting,Zhang Mei-Ling,Han Yue-Lin,Jia Li-Qun. Chin. Phys. B, 2012, 21(5): 050201.
[5] Lie symmetries and conserved quantities of discrete nonholonomic Hamiltonian systems
Wang Xing-Zhong,Fu Hao,Fu Jing-Li. Chin. Phys. B, 2012, 21(4): 040201.
[6] Approximate solution of the magneto-hydrodynamic flow over a nonlinear stretching sheet
Eerdunbuhe,Temuerchaolu. Chin. Phys. B, 2012, 21(3): 035201.
[7] Mei symmetry and Mei conserved quantity of Appell equations for a variable mass holonomic system of relative motion
Zhang Mei-Ling, Wang Xiao-Xiao, Han Yue-Lin, Jia Li-Qun. Chin. Phys. B, 2012, 21(10): 100203.
[8] Mei symmetries and Mei conserved quantities for higher-order nonholonomic constraint systems
Jiang Wen-An, Li Zhuang-Jun, Luo Shao-Kai. Chin. Phys. B, 2011, 20(3): 030202.
[9] Lie symmetry and Mei conservation law of continuum system
Shi Shen-Yang, Fu Jing-Li. Chin. Phys. B, 2011, 20(2): 021101.
[10] Lie symmetry and the generalized Hojman conserved quantity of Nielsen equations for a variable mass holonomic system of relative motion
Zhang Mei-Ling, Sun Xian-Ting, Wang Xiao-Xiao, Xie Yin-Li, Jia Li-Qun. Chin. Phys. B, 2011, 20(11): 110202.
[11] Special Lie symmetry and Hojman conserved quantity of Appell equations in a dynamical system of relative motion
Xie Yin-Li, Jia Li-Qun, Luo Shao-Kai. Chin. Phys. B, 2011, 20(1): 010203.
[12] A new type of conserved quantity of Lie symmetry for the Lagrange system
Fang Jian-Hui. Chin. Phys. B, 2010, 19(4): 040301.
[13] Mei symmetry and Mei conserved quantity of Appell equations for a variable mass holonomic system
Cui Jin-Chao, Zhang Yao-Yu, Yang Xin-Fang, Jia Li-Qun. Chin. Phys. B, 2010, 19(3): 030304.
[14] Lie symmetries and conserved quantities for a two-dimensional nonlinear diffusion equation of concentration
Zhao Li, Fu Jing-Li, Chen Ben-Yong. Chin. Phys. B, 2010, 19(1): 010301.
[15] Hojman's theorem of the third-order ordinary differential equation
Lü Hong-Sheng, Zhang Hong-Bin, Gu Shu-Long. Chin. Phys. B, 2009, 18(8): 3135-3138.
No Suggested Reading articles found!