Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(4): 040504    DOI: 10.1088/1674-1056/21/4/040504
GENERAL Prev   Next  

Cryptanalysis of an ergodic chaotic encryption algorithm

Wang Xing-Yuan,Xie Yi-Xin,Qin Xue
Faculty of Electronic Information and Electrical Engineering, Dalian University of Technology, Dalian 116024, China
Abstract  In this paper, we present the results for the security and the possible attacks on a new symmetric key encryption algorithm based on the ergodicity property of a logistic map. After analysis, we use mathematical induction to prove that the algorithm can be attacked by a chosen plaintext attack successfully and give an example to show how to attack it. According to the cryptanalysis of the original algorithm, we improve the original algorithm, and make a brief cryptanalysis. Compared with the original algorithm, the improved algorithm is able to resist a chosen plaintext attack and retain a considerable number of advantages of the original algorithm such as encryption speed, sensitive dependence on the key, strong anti-attack capability, and so on.
Keywords:  chaos      cryptanalysis      encryption      block-cipher     
Received:  16 September 2011      Published:  29 February 2012
PACS:  05.45.Ac (Low-dimensional chaos)  
  05.45.Gg (Control of chaos, applications of chaos)  
  05.45.Vx (Communication using chaos)  
Fund: Project supported by the National Natural Science Foundation of China(Grant Nos.61173183,60573172,and 60973152),theDoctoral Program Foundation of Institution of Higher Education of China(Grant No.20070141014),and the Natural ScienceFoundation of Liaoning Province,China(Grant No.20082165)
Corresponding Authors:  Wang Xing-Yuan,     E-mail:

Cite this article: 

Wang Xing-Yuan,Xie Yi-Xin,Qin Xue Cryptanalysis of an ergodic chaotic encryption algorithm 2012 Chin. Phys. B 21 040504

[1] Wang X Y 2003 The Chaos in Complex Non-linear Systems (Beijing: Electronic Industry Press) p. 5 (in Chinese)
[2] Zhang H G, Xie Y H, Wang Z L and Zheng C D 2007 IEEE Trans. Neural Networks 18 1841
[3] Ma D Z, Zhang H G, Wang Z S and Feng J 2010 Chin. Phys. B 19 050506
[4] Zhang H G, Ma D Z, Wang Z S and Feng J 2010 Acta Phys. Sin. 59 147156 (in Chinese)
[5] Zhang H G, Ma T D, Huang G B and Wang Z L 2010 IEEE Trans. Sys., Man and Cybernetics 40 831
[6] Wang X Y, Qin X and Xie Y X 2011 Chin. Phys. Lett. 28 080501
[7] Wang J and Jiang G P 2011 Acta Phys. Sin. 60 060503 (in Chinese)
[8] Jin J X and Qiu S S 2010 Acta Phys. Sin. 59 792 (in Chinese)
[9] Baptista M S 1998 Phys. Lett. A 240 50
[10] Jakimoski G and Kocarev L 2001 Phys. Lett. A 291 381
[11] Alvarez G, Montoya F, Romera M and Pastor G 2004 Phys. Lett. A 326 211
[12] Wong W K, Lee L P and Wong K W 2001 Comput. Phys. Commun. 138 234
[13] Wong K W 2002 Phys. Lett. A 298 238
[14] Palacios A and Juarez H 2002 Phys. Lett. A 303 345
[15] Wong K W 2003 Phys. Lett. A 307 292
[16] Li S, Chen G, Wong K W, Mou X and Cai Y 2004 Phys. Lett. A 332 368
[17] Wang X Y, Duan C F and Gu N N 2008 Int. J. Mod. Phys. B 22 901
[18] Li H J and Zhang J S 2010 Chin. Phys. B 19 050508
[19] Wang X Y and Xie Y X 2011 Chin. Phys. B 20 080504
[20] Àlvarez G, Montoya F, Romera M and Pastor G 2003 Phys. Lett. A 311 172
[21] Wang X Y and Wang X J 2011 Int. J. Mod. Phys. B 25 2047
[1] Quantum to classical transition induced by a classically small influence
Wen-Lei Zhao(赵文垒), Quanlin Jie(揭泉林). Chin. Phys. B, 2020, 29(8): 080302.
[2] Hidden attractors in a new fractional-order discrete system: Chaos, complexity, entropy, and control
Adel Ouannas, Amina Aicha Khennaoui, Shaher Momani, Viet-Thanh Pham, Reyad El-Khazali. Chin. Phys. B, 2020, 29(5): 050504.
[3] Dynamics analysis of chaotic maps: From perspective on parameter estimation by meta-heuristic algorithm
Yue-Xi Peng(彭越兮), Ke-Hui Sun(孙克辉), Shao-Bo He(贺少波). Chin. Phys. B, 2020, 29(3): 030502.
[4] Bifurcation and chaos characteristics of hysteresis vibration system of giant magnetostrictive actuator
Hong-Bo Yan(闫洪波), Hong Gao(高鸿), Gao-Wei Yang(杨高炜), Hong-Bo Hao(郝宏波), Yu Niu(牛禹), Pei Liu(刘霈). Chin. Phys. B, 2020, 29(2): 020504.
[5] Chaotic dynamics of complex trajectory and its quantum signature
Wen-Lei Zhao(赵文垒), Pengkai Gong(巩膨恺), Jiaozi Wang(王骄子), and Qian Wang(王骞). Chin. Phys. B, 2020, 29(12): 120302.
[6] Nonlinear dynamics in non-volatile locally-active memristor for periodic and chaotic oscillations
Wen-Yu Gu(谷文玉), Guang-Yi Wang(王光义), Yu-Jiao Dong(董玉姣), and Jia-Jie Ying(应佳捷). Chin. Phys. B, 2020, 29(11): 110503.
[7] Memristor-based hyper-chaotic circuit for image encryption
Jiao-Jiao Chen(陈娇娇), Deng-Wei Yan(闫登卫), Shu-Kai Duan(段书凯), and Li-Dan Wang(王丽丹). Chin. Phys. B, 2020, 29(11): 110504.
[8] Chaotic analysis of Atangana-Baleanu derivative fractional order Willis aneurysm system
Fei Gao(高飞), Wen-Qin Li(李文琴), Heng-Qing Tong(童恒庆), Xi-Ling Li(李喜玲). Chin. Phys. B, 2019, 28(9): 090501.
[9] Phase retrieval algorithm for optical information security
Shi-Qing Wang(王诗晴), Xiang-Feng Meng(孟祥锋), Yu-Rong Wang(王玉荣), Yong-Kai Yin(殷永凯), Xiu-Lun Yang(杨修伦). Chin. Phys. B, 2019, 28(8): 084203.
[10] New chaotical image encryption algorithm based on Fisher-Yatess scrambling and DNA coding
Xing-Yuan Wang(王兴元), Jun-Jian Zhang(张钧荐), Fu-Chen Zhang(张付臣), Guang-Hui Cao(曹光辉). Chin. Phys. B, 2019, 28(4): 040504.
[11] Dynamical stable-jump-stable-jump picture in a non-periodically driven quantum relativistic kicked rotor system
Hsincheng Yu(于心澄), Zhongzhou Ren(任中洲), Xin Zhang(张欣). Chin. Phys. B, 2019, 28(2): 020504.
[12] Design new chaotic maps based on dimension expansion
Abdulaziz O A Alamodi, Kehui Sun(孙克辉), Wei Ai(艾维), Chen Chen(陈晨), Dong Peng(彭冬). Chin. Phys. B, 2019, 28(2): 020503.
[13] Enhancing von Neumann entropy by chaos in spin-orbit entanglement
Chen-Rong Liu(刘郴荣), Pei Yu(喻佩), Xian-Zhang Chen(陈宪章), Hong-Ya Xu(徐洪亚), Liang Huang(黄亮), Ying-Cheng Lai(来颖诚). Chin. Phys. B, 2019, 28(10): 100501.
[14] Experimental investigation of the fluctuations in nonchaotic scattering in microwave billiards
Runzu Zhang(张润祖), Weihua Zhang(张为华), Barbara Dietz, Guozhi Chai(柴国志), Liang Huang(黄亮). Chin. Phys. B, 2019, 28(10): 100502.
[15] Efficient image encryption scheme with synchronous substitution and diffusion based on double S-boxes
Xuan-Ping Zhang(张选平), Rui Guo(郭瑞), Heng-Wei Chen(陈恒伟), Zhong-Meng Zhao(赵仲孟), Jia-Yin Wang(王嘉寅). Chin. Phys. B, 2018, 27(8): 080701.
No Suggested Reading articles found!