Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(3): 037201    DOI: 10.1088/1674-1056/21/3/037201
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Thermospin effects in parallel coupled double quantum dots in the presence of the Rashba spin–orbit interaction and Zeeman splitting

Xue Hui-Jiea b,Lü Tian-Quana,Zhang Hong-Chenc,Yin Hai-Taob,Cui Liana,He Ze-Longa
1. Department of physics, Center for Condensed Matter Science and Technology, Harbin Institute of Technology, Harbin 150001, China;
2. Heilongjiang Key Laboratory for Low Dimensional and Mesoscopic Physics, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, China;
3. Space Materials and Environment Engineering Laboratory, Harbin Institute of Technology, Harbin 150001, China
Abstract  The thermoelectric and the thermospin transport properties, including electrical conductivity, Seebeck coefficient, thermal conductivity, and thermoelectric figure of merit, of a parallel coupled double-quantum-dot Aharonov-Bohm interferometer are investigated by means of the Green function technique. The periodic Anderson model is used to describe the quantum dot system, the Rashba spin-orbit interaction and the Zeeman splitting under a magnetic field are considered. The theoretical results show the constructive contribution of the Rashba effect and the influence of the magnetic field on the thermospin effects. We also show theoretically that material with a high figure of merit can be obtained by tuning the Zeeman splitting energy only.
Keywords:  thermospin effect      spin Seebeck coefficient      Zeeman splitting      Rashba spin-orbit interaction  
Received:  18 April 2011      Revised:  09 October 2011      Published:  15 February 2012
PACS:  72.25.Dc (Spin polarized transport in semiconductors)  
  73.21.La (Quantum dots)  
  72.20.Pa (Thermoelectric and thermomagnetic effects)  
Fund: Project supported by the Natural Science Foundation of Heilongjiang Province, China (Grant No. F200939).
Corresponding Authors:  L? Tian-Quan,ltq@hit.edu.cn     E-mail:  ltq@hit.edu.cn

Cite this article: 

Xue Hui-Jie,Lü Tian-Quan,Zhang Hong-Chen,Yin Hai-Tao,Cui Lian,He Ze-Long Thermospin effects in parallel coupled double quantum dots in the presence of the Rashba spin–orbit interaction and Zeeman splitting 2012 Chin. Phys. B 21 037201

[1] Cutler M and Mott N F 1969 Phys. Rev. 181 1336
[2] Snyder G J and Toberer E S 2008 Nat. Mater. 7 105
[3] Kubala B, König J and Pekola J 2008 Phys. Rev. Lett. 100 066801
[4] Hicks L D and Dresselhaus M S 1993 Phys. Rev. B 47 16631
[5] Blanter Y M, Bruder C, Fazio R and Schoeller H 1997 Phys. Rev. B 55 4069
[6] Lin C P J and Reinecke T L 1995 Phys. Rev. B 51 13244
[7] Humphrey T E and Linke H 2005 Phys. Rev. Lett. 94 096601
[8] Kim T S and Hershfield S 2002 Phys. Rev. Lett. 88 136601
[9] Kim T S and Hershfield S 2003 Phys. Rev. B 67 165313
[10] Swirkowicz R, Wierzbicki M and Barnas J 2009 Phys. Rev. B 80 195409
[11] Chi F, Zheng J, Lu X D and Zhang K C 2011 Phys. Lett. A 375 1352
[12] Liu J, Sun Q F and Xie X C 2010 Phys. Rev. B 81 245323
[13] Swirkowicz R and Wierzbicki M 2010 Phys. Rev. B 82 165334
[14] S醤chez R and B黷tiker M 2011 Phys. Rev. B 83 085428
[15] Uchida K, Takahashi S, Harii K, Ieda J, Koshibae W, Ando K, Maekawa S and Saitoh E 2008 Nature 455 778
[16] Sinova J 2010 Nat. Mater. 9 880
[17] Li Y X and Li B Z 2004 Phys. Lett. A 330 274
[18] Li Y X and Li B Z 2005 Chin. Phys. 14 1009
[19] Li Y X 2006 Phy. Lett. A 358 70
[20] L? H F, Zhu L C, Zu X T and Zhang H W 2010 Appl. Phys. Lett. 96 12311
[21] Swirkowicz R, Wierzbicki M and Barnas J 2009 Phys. Rev. B 80 195409
[22] Zhu L C, Jiang X D, Zu X T and L? H F 2010 Phys. Lett. A 374 4269
[23] Liu Y S and Yang X F 2010 J. Appl. Phys. 108 023710
[24] Liu Y S, Chi F, Yang X F and Feng J F 2011 J. Appl. Phys. 109 053712
[25] Liu Y S, Zhang D B, Yang X F and Feng J F 2011 Nanotechnology 22 225201
[26] Xue H J, L? T Q, Zhang H C, Yin H T, Cui L and He Z L 2011 Chin. Phys. B 20 027301
[27] Liang L, Wang Z M, Lee J H, Mazur Y I, Shih C K and Salamo G J 2008 ACS Nano 2 2219
[28] Chi F and Li S S 2006 J. Appl. Phys. 99 043705
[29] Van der Wiel W G, Franceschi S D, Elzerman J M, Fujisawa T, Tarucha S and Kouwenhoven L P 2003 Rev. Mod. Phys. 75 1
[30] Chi F and Zhao H L 2010 Superlattices and Mirostructures 47 452
[31] Sun Q F, Wang J and Guo H 2005 Phys. Rev. B 71 165310
[31] Yin H T, L? T Q, Sun P N, Liu X J and Xue H J 2009 Phys. Lett. A 373 3085
[32] Yin H T, L? T Q, Liu X J and Xue H J 2010 Phys. Status. Solidi. B 247 150
[33] Huang R, Wu S Q and Yan C H 2010 Chin. Phys. B 19 077302
[34] Wang R, Kong L M, Zhou Y Q, Zhang C X and Xing Z Y 2010 Chin. Phys. B 19 127202
[1] Spin flip in single quantum ring with Rashba spin-orbit interation
Duan-Yang Liu(刘端阳), Jian-Bai Xia(夏建白). Chin. Phys. B, 2018, 27(3): 037201.
[2] Topological phase in one-dimensional Rashba wire
Sa-Ke Wang(汪萨克), Jun Wang(汪军), Jun-Feng Liu(刘军丰). Chin. Phys. B, 2016, 25(7): 077305.
[3] Thermodynamic behaviour of Rashba quantum dot in the presence of magnetic field
Sukirti Gumber, Manoj Kumar, Pradip Kumar Jha, Man Mohan. Chin. Phys. B, 2016, 25(5): 056502.
[4] Spin texturing in a parabolically confined quantum wire with Rashba and Dresselhaus spin–orbit interactions
S. Saríkurt, S. Şakiroğlu, K. Akgüngör, İ. Sökmen. Chin. Phys. B, 2014, 23(1): 017102.
[5] Orbital magnetization in semiconductors
Fang Cheng, Wang Zhi-Gang, Li Shu-Shen, Zhang Ping. Chin. Phys. B, 2009, 18(12): 5431-5436.
[6] Quantum interference effects in a multidriven transition Fg = 3\leftrightarrow Fe = 2
Dong Ya-Bin, Zhang Jun-Xiang, Wang Hai-Hong, Gao Jiang-Rui. Chin. Phys. B, 2006, 15(6): 1262-1267.
[7] Effects of spin-orbit interaction and magnetic field on the electron transport in quasi-1D ferromagnetic/semiconductor/ferromagnetic system  
Li Bo-Zang, Li Yu-Xian. Chin. Phys. B, 2005, 14(5): 1021-1024.
No Suggested Reading articles found!